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Abstract

Stellet, Hugo Finizola; Gimenes, Nathalie Christine (Advisor); Medei-
ros, Marcelo Cunha (Co-Advisor). Essays concerning high-dimension
asset pricing: time-variability, the SDF model error and factors re-
turns’ alphas. Rio de Janeiro, 2024. 86p. Tese de doutorado – Depar-
tamento de Economia, Pontifícia Universidade Católica do Rio de Ja-
neiro.

This dissertation comprises two essays on high-dimensional factor-based
asset pricing, with an application to the United States equity market. We begin
by introducing a time-varying framework to select relevant pricing factors, while
actively avoiding biases, and evaluate the effectiveness of applied dimension-
reducing techniques. We present the main findings of the articles that constitute
this thesis. The first article builds on the Stochastic Discount Factor (SDF) model
error to identify the most relevant pricing factors, employing sparsity-inducing
regression techniques. Contending that traditional factor-based asset pricing mo-
dels arbitrarily assume high levels of sparsity, we propose an alternative criterion
for determining the penalization parameter in shrinkage regression to ensure si-
milar factor scarcity. Our results demonstrate that even simple regressions can
achieve good predictability - and factor sparsity is desirable. In the second pa-
per, we leverage shrinkage techniques on regressions spanning pricing anoma-
lies returns’ to identify statistically significant factors. This framework proposes
methods for selecting a limited number of impactful factors under sparsity. This
approach outperforms the benchmarks, strengthening the sparse pricing anoma-
lies idea. Finally, we compare the results of the two articles’ methodologies, high-
lighting the qualitative aspects of factor selection.

Keywords

Time-varying asset pricing Factor investing Shrinkage penalization
Stochastic Discount Factor error Spanning regressions



Resumo

Stellet, Hugo Finizola; Gimenes, Nathalie Christine; Medeiros, Mar-
celo Cunha. Ensaios sobre precificação de ativos em alta dimensão:
variações temporais, erro do SDF e alfas dos retornos de fatores. Rio
de Janeiro, 2024. 86p. Tese de Doutorado – Departamento de Econo-
mia, Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese é composta por dois ensaios sobre precificação de ativos base-
ada em fatores em alta dimensão, trazendo uma aplicação ao mercado de ações
dos Estados Unidos. Iniciamos introduzindo uma estrutura que comporta viari-
abilidade temporal para selecionar fatores de precificação relevantes, ativamente
evitando viéses, e avalia a eficácia das técnicas aplicadas para redução de di-
mensionalidade. Em seguida, apresentamos as principais descobertas dos artigos
que constituem esta tese. O primeiro artigo parte do erro do modelo de Fator de
Desconto Estocástico para identificar os fatores de precificação mais relevantes,
empregando técnicas de regressão específicas para induzir esparsidade. Como os
modelos tradicionais de precificação de ativos baseados em fatores assumem ar-
bitrariamente altos níveis de esparsidade, propomos um critério alternativo para
determinar o parâmetro de penalização na regressão, a fim de garantir uma es-
cassez de fatores semelhante para um modelo de alta dimensão. Nossos resul-
tados demonstram que até mesmo regressões simples podem proporcionar boa
previsibilidade - e a esparsidade na seleção de fatores é desejável. No segundo ar-
tigo, utilizamos técnicas de encolhimento em regressões que "spanam" retornos
de anomalias de precificação para identificar fatores estatisticamente significati-
vos. Esta estrutura enfatiza a esparsidade, propondo métodos para selecionar um
número limitado de fatores relevantes. Esta abordagem supera os benchmarks e
corroborou com a ideia de esparcidade na seleção de anomalias de precificação.
No final, comparamos os resultados das metodologias dos dois artigos, desta-
cando os aspectos qualitativos da seleção de fatores.

Palavras-chave

Apreçamento de ativos variável no tempo Investimento em fatores Pe-
nalização por ecolhimento Erro do Fator Estocástico de Desconto Regressões
de span
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Introduction

The pursuit of factors that might explain variations in the cross-section
of expected returns has yielded an extensive array of proposed factors in the
literature. However, Cochrane (2011) critiques this trend, suggesting that the
proliferation of factors has become excessive, making it both impractical and
conceptually unsound to evaluate them jointly. He refers to this phenomenon as
a "factor zoo" and advocates against using too many factors to explain the cross-
sectional average of returns.

Cochrane’s critique raises an intriguing question: which factors hold gen-
uine significance? The sheer volume of potential factors transforms the challenge
of factor selection into a high-dimensional puzzle

This dissertation addresses high-dimensional factor selection in asset pric-
ing through two distinct essays, each investigating the role of sparsity in factor
selection using fundamentally different methodologies. Chapter 2 builds upon a
specification of the factor model based on a projection of the Stochastic Discount
Factor (SDF) onto the subspace of the US equity market (see Feng et al., 2020)
while leveraging shrinkage techniques to identify relevant factors. In chapter 3
we adapt traditional low-dimensional methods to a high-dimensional environ-
ment to evaluate the statistical significance of factors by spanning each factor’s
returns against all other available factors and assessing the LASSO’s intercept
statistical significance (see Jensen et al., 2023).

The remaining chapters examine the convergences and divergences be-
tween these methodologies, enhancing our understanding of their distinct impli-
cations for factor selection in asset pricing. Chapter 1 introduces the time-varying
framework applied in both studies while presenting intuition about factor mod-
els’ sparsity, factor multicollinearity, and benchmarks to confront obtained re-
sults. Finally, Chapter 4 expands the analysis qualitatively by examining the na-
ture of the most significant pricing factors and comparing the outcomes of both
methodologies.



1
Time-varying asset pricing: A framework

Abstract. This chapter introduces a flexible, time-varying framework
to address the curse of dimensionality in the factor zoo, targeting is-
sues in selecting relevant asset-pricing factors. By separating rolling
windows for multicollinearity treatment, factor selection, and returns
prediction, the framework avoids look-ahead bias and ensures robust-
ness. It is adaptable to diverse shrinkage techniques, encouraging tailor-
ing to specific research needs. Additionally, two rigorous benchmarks
— one based on a classic low-dimensional model and the other on
Monte Carlo simulations — are incorporated to assess out-of-sample
predictability. We also explore the concept of implicit sparsity in tra-
ditional models, proposing methods to achieve similar sparsity levels
in high-dimensional contexts. This framework lays the groundwork
for two novel dimensionality-reduction approaches evaluated in sub-
sequent chapters.

Keywords: factor asset pricing; time-varying asset pricing; high-
dimensionality asset pricing; Sharpe ratio benchmarks.
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1.1
Introduction

Cochrane (2011) noted that it is unlikely for all pricing factors proposed in
the literature to be jointly relevant for the cross-section of average returns. We
will apply two distinct dimension-reducing techniques, to two different interpre-
tations of the factor zoo, to select relevant pricing factors. The factor selections
will be evaluated according to their returns forecast capacities.

However, before presenting our shrinkage methodologies (see Chapters
2 and 3) we dedicate this first chapter to properly setting up a time-varying
framework for managing the dimensionality issue, without incurring any biases.

In contrast to Feng et al. (2020), which proposed a parsimonious, time-
invariant approach to assess the relevance of newly proposed pricing anomalies,
Freyberger et al. (2020) used the Adaptive Group LASSO (see Huang et al., 2010) in
a rolling-window scheme in a study focused on predictability, evaluating shrink-
age exercises performances according to the observed out-of-sample returns of
hedge portfolios built concerning predicted assets returns.

We develop a time-variant framework, enabling the distinction between the
time series used for finding the relevant pricing factors and for testing asset re-
turns’ predictions. Moreover, we added the possibility of a distinct rolling win-
dow for addressing multicollinearity issues. We show that, if the researcher aims
to validate her hypothesis through out-of-sample returns of hedge portfolios, fac-
tor selection should be conducted within a rolling window scheme to avoid biases
- especially look-ahead bias.

Furthermore, we propose new benchmarks for evaluating factor selection
models’ out-of-sample predictability: one inspired by the acclaimed Fama-French
3 factors model (Fama & French, 1993) and another grounded on Monte Carlo
simulations.

We also describe two usual methodologies for shrinking the zoo (LASSO
and Elastic Net - see Tibshirani (1996) and Zou & Hastie (2005)) and the classic
criteria to determine the severity of the shrinkage (CV, BIC, and AIC - see Stone
(1974), Schwarz (1978), and Akaike (1974)). However, we believe that there is
a silent sparsity assumption in classic low-dimensional asset-pricing literature,
arguing that it may be beneficial to high-dimensional models to impose similar
sparsity degrees.
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Contributions for the literature. We can summarize the main contributions of
this essay on two fronts. First, this essay advances the literature on time-varying
asset pricing by introducing a robust, flexible framework for working within the
factor zoo environment. Second, the proposed stricter benchmarks for accessing
out-of-sample results free researchers from being subject to a raw Sharpe ratio
analysis, offering benchmarks that combine intuitive metrics with quantitative
precision.

We also point out minor contributions, as we elaborate an argument for
imposing quantitative/high-dimensional models to sparsity levels comparable
to classic low-dimension asset pricing, and shed light on a relevant bias both
researchers and practitioners might be introducing in their applications.

Outline. This chapter has five more sections in addition to this Introduction.
Section 1.2 presents the so-called factor zoo, while Section 1.3 explores its high-
dimensionality, comparing it to low-dimensional settings, and introducing can-
didate frameworks to tackle the curse of dimensionality. Section 1.4 encompasses
discussions about how to access models’ results, including the ideal set of test as-
sets, metrics to verify predictability, and stricter benchmarks. Finally, Section 1.5
wraps up all relevant aspects into a time-varying setup, and Section 1.6 concludes
this introductory chapter.

1.2
The factor zoo

Factor-based asset pricing models have had a groundbreaking impact on the
finance field since the introduction of the Capital Asset Pricing Model (CAPM)
over half a century ago by Sharpe (1964) and Lintner (1965). Originally solely
composed of the market factor, multiple researchers refined the CAPM over the
last decades. This core intuition continues in modern models, such as the Fama-
French, Carhart, and q-4 factor models (see Fama & French, 1993, 2015; Carhart,
1997; Hou et al., 2015), where asset returns are evaluated based on relevant pricing
factors.

However, the literature on factors that allegedly explain the cross-section of
expected returns has rapidly expanded, producing hundreds of articles, as shown
by Hou et al. (2020), who even compiled a data library of 447 published anomaly
variables. Cochrane (2011) labeled this situation the zoo of factors, likening the
vast variety of animals in a zoo to the myriad of factors - each emitting a
particular noise - in the literature. In simpler terms, the abundance of factors calls
for researchers to focus on two primary objectives: establishing a parsimonious
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benchmark for assessing new factors and developing models that accurately
predict market returns.

In addition, the traditional Fama & MacBeth (1973) regression faces theoret-
ical issues, as in a high-dimensional world, the number of factors (K) is likely
to be greater than the number of test assets (N), making the standard Fama-
MacBeth approach infeasible. Furthermore, pricing anomalies tend to be highly
correlated, which can lead to the selection of redundant factors - especially in
high-dimensional settings. Additionally, when factors are correlated, the Fama-
MacBeth approach may suffer from weak factor identification - see Kleibergen
(2009). Therefore, alternative methods are required to effectively estimate the fac-
tor loadings and test for the significance of the estimated coefficients.

1.2.1
Anomaly factors

Factors are constructed based on published asset pricing anomalies, which
are defined by Brennan & Xia (2001) as "statistically significant differences between
the realized average returns associated with certain characteristics of securities, or on
portfolios of securities formed based on those characteristics, and the returns that are
predicted by a particular asset pricing model".

In addition to the market factor, we examine 80 additional characteristics-
based factors as possible regressors - see Table 1.1. We exclude micro stocks with
a market capitalization smaller than the 20th percentile of NYSE-listed stocks.1

We compute the factors as the spread returns between top and bottom
decile portfolios, controlling for size. This approach is akin to a more tail-oriented
version of Fama & French (1993)’s methodology, which uses deciles instead of
30% percentiles. As the key consideration is whether the factor survives the
dimensionality-lowering procedure, all factors are calculated on a high-minus-
low basis - regardless of whether they are characterized as low-minus-high in the
literature. We demean and adjust all factors to share the same standard devia-
tion as the market factor. This facilitates interpretation and turns the estimated
coefficients’ magnitudes comparable.

1Micro stocks are classified monthly.
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1.2.2
Factor multicollinearity

One of the primary concerns highlighted by Cochrane in his presidential
address (Cochrane, 2011) is that is highly unlikely that all proposed pricing
factors are jointly relevant in pricing the cross-section of asset returns. This
skepticism arises because some factors capture similar qualitative information
(e.g., illiquidity and zero trading days), some are combinations of others (e.g.,
current ratio and percentage change in current ratio), some vary only by a time
frame of interest (e.g., 1, 6, 12, 36-month momentum), and some are even squared
versions of others (e.g., beta and beta squared).

Table 1.1: Anomaly factors

Abbreviation Description Abbreviation Description

absacc Absolute accruals mom1m 1-month momentum
acc Working capital accruals mom36m 36-month momentum
aeavol Abnormal earnings announcement volume mom6m 6-month momentum
agr Asset growth ms Financial statement score
baspread Bid-ask spread mve Size
beta Beta mve_ia Industry adjusted size
betasq Beta squared nincr Number of earnings increases
bm Book-to-market operprof Operating profitability
bm_ia Industry adjusted book-to-market pchcapx_ia Industry adjusted % change in capital expenditures
cash Cash holding pchcurrat % change in current ratio
cashdebt Cash flow to debt pchdepr % change in depreciation
cashpr Cash productivity pchgm_pchsale % change in gross margin - % change in sales
cfp Cash flow to price ratio pchquick % change in quick ratio
cfp_ia Industry adjusted cfp pchsale_pchinvt % change in sale - % change in inventory
chatoia Industry adjusted change in asset turnover pchsale_pchrect % change in sale - % change in A/R
chcsho Change in share outstanding pchsale_pchxsga % change in sale - % change in SG&A
chempia Industry adjusted change in employees pchsaleinv % change in sales-to-inventory
chinv Change in inventory pctacc Percent accruals
chmom Change in 6-month momentum pricedelay Price delay
chpmia Industry adjusted change in profit margin ps Financial statement score
chtx Change in tax expense quick Quick ratio
cinvest Corporate investment retvol Return volatility
currat Current ratio roaq Return on assets
depr Depreciation roavol Earning volatility
dolvol Dollar trading volume roeq Return on equity
dy Dividend-to-price roic Return on invested capital
ear Earnings announcement return rsup Revenue surprise
egr Growth in common shareholder equity salecash Sales to cash
ep Earnings-to-price saleinv Sales to inventory
gma Gross proditability salerec Sales to receivables
grcapx Growth in capital expenditure sgr Sales growth
grltnoa Growth in long term net operating assets sp Sales-to-price
hire Employee growth rate std_dolvol Volatility of liquidity (dollar trading volume)
idiovol Idiosyncratic return volatility std_turn Volatility of liquidity (share turnover)
ill Illiquidity stdacc Accrual volatility
invest Capital expenditure and inventory stdcf Cash flow volatility
lev Leverage tang Debt capacity/firm tangibility
lgr Growth in long term debt tb Tax income to book income
maxret Max daily return turn Share turnover
mom12m 12-month momentum zerotrade Zero trading days

Notes: This table lists all used factors. The abbreviation is consistent with Green et al. (2017) and
Sun (2024). Detailed information is available at Green et al. (2017).

Although multicollinearity does not bias estimated slope coefficients, it in-
flates their standard errors. For instance, severe multicollinearity poses a chal-
lenge for shrinkage methods like the LASSO regression (see Tibshirani, 1996),
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which may lead to arbitrary exclusion of certain covariates from the model if
they are sufficiently correlated. As correlated factors capture similar economic
reasoning, it may be interesting to treat possible multicollinearity issues before
imposing shrinkage.

In a tour through the zoo of factors, Sun (2024) briefly evaluates factor corre-
lation using two distinct methods: simply using time series of the factors’ returns
or using factor loadings (coefficients of explanatory variables in the second stage
of Fama-MacBeth regression - see Fama & MacBeth (1973)). Sun (2024) shows that
overall correlation levels between factors are substantially higher when measured
using factor loadings, evidencing that Fama-MacBeth’s regression may encounter
complications for this exercise.

1.3
Factor models’ sparsity

Despite recent advances in high-dimensional asset pricing models, such as
those by Bryzgalova et al. (2023) and Jensen et al. (2023), most widely known
models are low-dimensional due to either economic fundamentals or technical
limitations, such as computational constraints.

In this section, we present what we name a "silent" sparsity assumption
taken by traditional models, before providing insights on addressing the dimen-
sionality problem imposed by the vast universe of candidate factors.

1.3.1
"Silent" sparsity assumption

Classic, low-dimensional, asset pricing models - see Fama & French (1993,
2015), Carhart (1997), or Hou et al. (2015) - are broadly accepted by both academics
and practitioners. Those models are widely used as benchmarks of markets’
efficiency, and new pricing factors often have their statistical significance assessed
against one of those models.

Given the vast pool of candidate factors introduced in Section 1.2, we argue
that low-dimensional models implicitly assume high sparsity by focusing on only
a handful of pricing factors - even if not acknowledging it. We believe that this
silent sparsity assumption, where the focus is only on a handful of pricing factors,
might be a relevant source of strength for those models.

According to Feng et al. (2020), the asset pricing literature has implicitly re-
lied on the concept of sparsity for a long time. These models represent a selection
of a few factors from the vast zoo of factors that could be relevant for explaining
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cross-sectional expected returns. This approach results in a parsimonious repre-
sentation of the universe of factors, possibly carrying researchers´ personal biases
- possibly even unintentionally.

This sparsity differs from a machine learning-based approach, which im-
poses no bias toward any specific explanatory factor.

As the idea of sparsity is widely adopted in asset pricing models, we
test two distinct methodologies for imposing sparsity into two distinct higher-
dimension settings, turning the silent assumption into an explicit one. The intu-
ition behind this is that instead of qualitatively choosing pricing factors according
to some economic/financial intuitions, we rely on past data to select factors rele-
vant to pricing the cross-section of returns.

1.3.2
Tackling zoo’s high-dimensionality

Regularization and dimension-reduction techniques emerge as natural so-
lutions to the factor zoo problem, given that traditional methodologies do not
survive the curse of dimensionality. Machine-learning literature has produced sev-
eral methods that help tackle the curse of dimensionality. While acknowledging
the existence of more elaborated techniques,2 in this dissertation we focus on two
of the most widely used shrinkage techniques: Elastic Net (eNet) and LASSO (see
Zou & Hastie (2005) and Tibshirani (1996)). Focusing on less sophisticated regres-
sions will hopefully draw attention to the established time-varying framework.

These methods work by adding a penalty term Ω(b) to the usual Ordinary
Least Squares (OLS) regression, such that:

β̂ = argmin
b

[(Y − Xb)′(Y − Xb)] + Ω(b) (1.1)

The penalty term Ω(b) differs across regression techniques, defined by
the form of shrinkage applied to the model. The LASSO estimator (Tibshirani,
1996) includes a L1 norm penalty function for parameters. On the other hand,
the Elastic Net regression (Zou & Hastie, 2005) combines LASSO’s L1 norm
penalization with Ridge’s (Hoerl & Kennard, 1970) L2 norm. The penalty term
for each regression can be expressed as:

1. LASSO: Ω(b)LASSO = λ ∑K
j=1 |bj|

2. Elastic Net: Ω(b)eNet = λ ∑K
j=1[(1 − α)|bj|2 + α|bj|]

2See Figueiredo & Nowak (2016) and Huang et al. (2010) for the Ordered-Weighted and
Adaptive Group LASSO, respectively.
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The shrinkage penalty parameter merits special attention as a crucial com-
ponent of the objective function, set by the researcher to promote sparsity and
prevent overfitting. It dictates how severe the penalization will be, thus regulat-
ing the extent of shrinkage. Various techniques exist to aid in setting penaliza-
tion parameters, including K-fold Cross-Validation (CV) and Information Crite-
ria, such as Bayesian Information Criterion (BIC) and Akaike Information Crite-
rion (AIC).

Cross-Validation (CV), proposed by Stone (1974), partitions the data into
training and validation sets to evaluate model performance and prevent over-
fitting, making no strong assumptions about data distribution. Conversely,
Bayesian Information Criterion (BIC) (see Schwarz, 1978) and Akaike Informa-
tion Criterion (AIC) (see Akaike, 1974) weigh the trade-off between model fit and
complexity, with BIC often favoring more parsimonious models than AIC.

One advantage of employing Information Criteria over Cross-Validation
lies in their computational efficiency and ease of application to large datasets.
However, Information Criteria hinge on stronger data distribution assumptions
and may be sensitive to violations. In contrast, Cross-Validation offers robustness
against such violations but demands computational resources and a substantial
sample size.

Usually, both methodologies would be well-suited for our applications.
However, since the SDF error regression presented in Chapter 2 does not pair well
with CV,3 following Freyberger et al. (2020), we adopt BIC as the more suitable
method given its computational efficiency and suitability for our applications.

1.3.3
Methodologies for imposing sparsity

Chapter 2. The next chapter exposes a methodology built upon the Stochastic
Discount Factor (SDF), approximating the US equity market as a projection, a sub-
space, of the SDF. Factor selection is done directly through shrinkage regressions,
where the objective function is obtained algebraically after some manipulation of
the SDF pricing error expression.

Chapter 3. The following chapter adapts the usual low-dimensional method-
ology employed to verify a pricing anomaly relevance, of facing the new factor
over a given set of benchmark factors, to higher-dimensional environments. Fac-

3As the independent variable is a covariance matrix of factors´ and assets´ returns, properly
partitioning the data would require re-estimating the matrix, imposing unnecessary computa-
tional costs into the model.
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tor selection is accessed by observing the p-values of the intercepts of a series of
factors’ returns spanning regressions - estimated through LASSO.

1.4
Assessing models’ results

We assess the predictability of the chosen factors through an out-of-sample
analysis, following Freyberger et al. (2020), by examining returns on hedge port-
folios constructed from test assets’ return predictions based on these selected fac-
tors.

There is a divide in the literature on the optimal set of test assets for
asset pricing models. While some researchers argue for individual stocks - see
Harvey & Liu (2021) and Lewellen (2015) - others favor characteristic-sorted
portfolios due to their more stable betas and better signal-to-noise ratios, which
help mitigate missing data issues (see Feng et al. (2020)).4 In line with these
arguments, we generate our test assets by sorting the stocks into portfolios based
on their factors’ characteristics.

Using the methodology from Sun (2024), we construct bivariate sorted
portfolios by intersecting stock size with each of the 80 characteristics from the
prior subsection - in line with Feng et al. (2020) and Freyberger et al. (2020). These
portfolios, formed in a 5 × 5 grid, are long-only and less extreme (in comparison
to anomaly factor portfolios - see Subsection 1.2.1), as thresholds are set two
deciles apart instead of one. At the end of the process, any bivariate portfolio
that fails to generate diversified portfolios, i.e., portfolios with less than 20 assets,
for all dates of interest will be excluded from the set of test assets. Therefore, we
end up using a total of 1896 diversified portfolios as the full set of test assets.

Freyberger et al. (2020) employ the returns of the selected factors, delayed
by one period, as predictors for test asset returns in simple OLS regressions
conducted over rolling windows of 120 months. Subsequently, they utilize the
OLS coefficients to forecast the returns of test assets one period ahead. A trading
strategy is then formulated, involving hedge portfolios: assets in the top decile
of predicted returns are bought, while those in the bottom decile are sold. If the
strategy yields significant alpha, the variable selection is deemed successful.

The one-period delay approach is widely used in the literature, implicitly
assuming factor momentum: the best estimate for a factor’s return at time t is its
return at t − 1. Given the broad acceptance of factor momentum (see Houweling
& Van Zundert, 2017; Gupta & Kelly, 2019), we find this assumption reasonable,

4Fama & French (2008) and Hou et al. (2015) have also advocated using sorted portfolios.
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particularly considering the interpretability of the results.

We adapt the described methodology, allowing for variations in the rolling
window sizes. The choice to vary window lengths may reflect different economic
implications: shorter windows should capture more immediate market dynam-
ics, while longer windows offer broader datasets, providing more stable esti-
mates.

This methodology provides us with several series of cash-neutral portfolio
returns, comparable over many possible performance metrics. Moreover, those
test portfolios are both abundant and - as based on securities characteristics -
have economic interpretations. Consistent with common practice in empirical as-
set pricing, we use the Sharpe ratio (see Sharpe, 1998) as the main performance
metric, supplemented by the average monthly turnover to approximate for im-
plementation costs.

1.4.1
Benchmarks

Practitioners often use an annualized Sharpe ratio, gross of trading costs,
above one as a "rule of thumb" for considering hedge portfolio returns "interest-
ing". Moreover, as all factor anomalies considered were reported as statistically
significant return predictors in other studies, abnormal results may be a byprod-
uct of that documented relevance.

Simply evaluating the hedge portfolios’ Sharpe ratios could raise doubts
about the full benefits of enforcing sparsity, so we introduce more stringent
benchmarks to allow for more meaningful comparisons.

Table 1.2: Out-of-sample returns prediction results - Fama-French benchmark

RWpred 60 120 180 240

3-factors Fama-French 1.38 1.57 1.64 1.49

Notes: This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-
short the 10% of stocks with the highest-lowest predicted returns, setting the factors as Fama &
French (1993), for different RWpred.

Fama-French One way to establish a fair benchmark is to replicate standard
procedures for testing pricing anomalies while adjusting them to our framework.
In that spirit, we generated out-of-sample results by fixing the factors from the
classic 3-factor model (Fama & French, 1993) as predictors - the aim is to incor-
porate the classic benchmark into our setup. The performance of this benchmark,
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measured by its out-of-sample Sharpe ratio, for all prediction windows, is pre-
sented in Table 1.2.

Monte Carlo simulation Abnormal returns might also be a byproduct of the
considered factors returns, rather than from proper factor selection. To further
examine this possibility, we conduct eight Monte Carlo simulations, selecting 3
or 5 factors at random in each to assess out-of-sample performance.

Table 1.3 presents the average Sharpe ratios obtained in our Monte Carlo
simulations (of 100 repetitions), where we randomly select distinct n factors for
each forecasting period.

Table 1.3: Out-of-sample returns prediction results - Monte Carlo benchmarks

RWpred 60 120 180 240

3 factors 1.14 1.30 1.45 1.49
5 factors 0.97 1.13 1.26 1.31

Notes: This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-
short the 10% of stocks with the highest-lowest predicted returns, selecting factors randomly
(following usual Monte Carlo approach), for different RWpred.

Both proposed benchmarks could generate higher-than-expected out-of-
sample Sharpe ratios, and results slightly favor the Fama-French-based portfo-
lios. Although those outstanding out-of-sample Sharpe ratios are probably a by-
product of the nature of test assets, we believe they provide viable metrics for
comparing the results of distinct asset pricing methodologies.

Our factor selection methodologies can only be deemed significant if they
outperform these stricter benchmarks, ideally across various combinations of
selection and forecasting windows (RWshrk and RWpred), addressing concerns
about potential data mining biases.

1.5
The time-varying framework

Data. Our dataset, drawn from CRSP and Compustat, spans January 1980 to
December 2021, covering all NYSE, AMEX, and NASDAQ-listed common stocks
and includes the 80 characteristics used by Sun (2024). Risk-free rate and market
excess returns are obtained from Kenneth French’s online data library.

Setup. This time-varying framework allows flexible use of multiple time win-
dows, supporting different financial perspectives while avoiding look-ahead
bias.
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Following Freyberger et al. (2020), we separate the rolling windows for each
step of our analysis:5 one for addressing multicollinearity, another for estimat-
ing relevant factors, and a final one for conducting out-of-sample prediction re-
gressions - denoted as RWmcol, RWshrk, and RWpred, respectively, as illustrated in
Figure 1.1.

Figure 1.1: Variable section rolling-window framework scheme

Notes: Illustration of the proposed time-variant factor selection framework. In this scenario, for
forecasting test assets’ returns for time t, VIFs are computed with data from t − 1 to t − RWmcol ,
factor selection considers data from t − 1 to t − RWshrk, and assets’ returns at time t are predicted
using a time series from t − 1 to t − RWpred.

This segmentation enables a thorough exploration of factor selection by
allowing each step — multicollinearity treatment, factor shrinkage, and returns
forecasting — to be conducted over different time frames, supporting a more
adaptable approach to factor selection.

The schematic representation of the proposed variable selection framework
is presented in Figure 1.1. To forecast test assets’ returns at time τ:

1. Multicollinearity treatment. If the chosen methodology involves a multi-
collinearity filter, run the treatment using data from t − 1 to t − RWmcol;

2. Shrinkage. For every factor accepted by the multicollinearity treatment, fi,
select relevant factors using data from t − 1 to t − RWshrk;

3. Returns forecast. Over a different time series, from t − 1 to t − RWpred,
regress the returns of selected factors against every test asset’s returns,
delayed by one period - as described in Section 1.4;

4. Hedge portfolios construction. Finally, use the OLS coefficients to project
test assets’ returns for time t: build neutral long-short portfolios based on
predicted returns, buying (selling) the top (bottom) decile.

Repeat this process across all periods, storing long-short portfolio returns
for performance evaluation metrics (see Section 1.4).

5In their article, Freyberger et al. (2020) keep the rolling window fixed for all analysis.
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This methodology facilitates examining the factor zoo problem by ensuring
a clear separation between the time series used for avoiding major multicollinear-
ity issues, the one to select relevant factors, and the time series utilized to forecast
returns based on that selection. It offers versatility, accommodating studies fo-
cused on stable factor models spanning decades of data, and those looking at
shorter periods such as intraday estimations.

1.5.1
Avoiding look-ahead biases

While verifying our models’ forecasting abilities, we should always avoid
any source of biases. Time-variant exercises like those in this dissertation must
carefully define data samples to ensure valid predictability assessments.

Also focused on good out-of-sample returns prediction, Sun (2024) selects
variables using all available data6 before conducting out-of-sample exercises to
evaluate the performance of hedged portfolios built upon selected variables.
When focused on predictability, using the full panel for selecting relevant factors
is not recommended as it introduces a look-ahead bias, using "future data" to
predict "past" asset returns.

Figure 1.2: Full panel variable section framework scheme

Notes: Illustration of a full panel factor selection framework. In this scenario, factor selection
considers all data available, and assets’ returns at time t are predicted using a time series from
t − 1 to t − RWpred. The look-ahead bias is characterized by the utilization of data from periods
later than t.

In summary, using the complete data panel when estimating covariance
matrices and factor models introduces look-ahead bias and can compromise the
accuracy of empirical findings. As illustrated in Figure 1.2, this bias arises from
using data that would not have been available at the prediction time.

6Sun (2024) also breaks the time series into two disjoint parts when observing the time-varying
nature of the selected factors. However, the bias persists within each disjoint sample.
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1.6
Final considerations

This essay establishes a framework to address the curse of dimensionality in
the factor zoo within a time-varying context. We carefully separate the rolling
windows for factor selection, forecasting regressions, and addressing issues such
as multicollinearity. The framework is adaptable to various shrinkage methods,
encouraging researchers to adjust it according to specific applications.

The methodology includes two rigorous benchmarks for out-of-sample pre-
dictability: one based on classical low-dimensional models and another using
Monte Carlo simulations. We also introduce the concept of an implicit sparsity
assumption in classic low-dimensional asset-pricing models, positing that select-
ing only a few factors from the extensive factor zoo inherently imposes a strong
sparsity constraint. High-dimensional models could benefit from this perspec-
tive, and we propose two methods for navigating the factor zoo while maintain-
ing comparable sparsity levels.

The framework introduced here will be applied in the next two chapters,
where we evaluate the predictive power of two distinct dimensionality-inducing
approaches.



2
Applying the time-varying framework on a Stochastic Discount
Factor methodology

Abstract. We apply the time-varying framework proposed in Chapter
1 for reducing dimensionality in Stochastic Discount Factor (SDF) mod-
els by selecting only the most relevant factors and utilizing sparsity-
inducing regression methods. We build upon the argument that tra-
ditional factor-based asset pricing models assume high sparsity levels
without empirical justification and propose a method to ensure a sim-
ilar scarcity of factors. To this end, we suggest an alternative criterion
for selecting the penalization parameter in shrinkage regression, ensur-
ing the selection of a pre-defined number of factors. The paper applies
the proposed framework to a large set of factors, widely used shrinkage
techniques, and various candidate time periods. It demonstrates that
even straightforward regression methods can yield significant results
when applied within the proposed methodology. Our work provides
a robust framework for researchers to identify and select relevant fac-
tors using the SDF approach while offering an additional criterion of
choice for the penalization parameter - which is especially useful for
ensuring sparsity. This chapter encompasses key contributions from the
article Sparsity-driven factor selection: A time-varying framework for factor
zoo screening.

Keywords: factor investing; SDF; time-varying asset pricing; shrink-
age penalization; high-dimensionality asset pricing.
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2.1
Introduction

As discussed in Chapter 1, the criticism of Cochrane’s presidential address
(see Cochrane, 2011) raised an important question: which factors truly matter?
Given the overwhelming number of potentially relevant factors, this situation
presents itself as a high-dimensional problem.

Feng et al. (2020) tackled the issue of the "factor zoo" by using a double-
LASSO selection procedure (see Belloni et al., 2014) favoring a more parsimonious
asset pricing model that sets a new benchmark for evaluating newly proposed
factors.

However, a limitation of LASSO is that when factors are highly correlated,
the estimator can become unstable, as highlighted by Kozak et al. (2020) and
Figueiredo & Nowak (2016).

Sun (2024) applied the Ordered Weighted LASSO (OWL, Figueiredo &
Nowak, 2016) to "dissect the factor zoo" and identify factors that are jointly
able to explain cross-sectional returns. Similarly, Freyberger et al. (2020) used the
Adaptive Group LASSO (see Huang et al., 2010) to "dissect non-parametrically the
factor zoo". Unlike Feng et al. (2020), both of these studies placed a greater focus
on out-of-sample predictability rather than determining a parsimonious model.

The level of shrinkage applied plays a crucial role when using these re-
gression techniques, requiring researchers to adjust penalization parameters care-
fully. Numerous methodologies have been proposed, with some prioritizing pre-
dictability, such as K-fold Cross-Validation (CV, Stone, 1974), and others empha-
sizing in-sample fits, such as the Bayesian Information Criterion (BIC, Schwarz,
1978) and the Akaike Information Criterion (AIC, Akaike, 1974). However, it is
worth noting that none of these commonly used criteria focus on ensuring a min-
imum level of sparsity.

Contributions for the literature. This essay’s main contributions can be sum-
marized along two main fronts. Firstly, we apply the time-varying framework
exposed in Chapter 1, which enables the distinction between the time series used
for different purposes.

In addition to applying the proposed framework for selecting factors in the
SDF methodology, we also suggest methods for guaranteeing a certain degree of
sparsity in shrinkage regressions - yielding sparsity levels comparable to usual
low-dimensional models. In our study, we applied basic shrinkage regression
techniques (LASSO and Elastic Net) to the SDF problem. We discovered that
using traditional Bayesian Information Criteria to set the penalization parameter
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does not yield strong predictive performance. However, we observed marked
improvements in out-of-sample performance when we enforced the selection of
a specified number of factors by adjusting the penalization parameter.

Findings. Among the main results of this essay are:

(i) The proposed methodology consistently outperformed the stricter bench-
marks introduced;

(ii) Ensuring higher levels of sparsity, comparable to (or even stricter than) low-
dimensional models produces higher out-of-sample Sharpe ratios;

(iii) Dissociating the periods used for factor selection and returns prediction
positively impacts the SDF dimensionality problem;

(iv) Windows of 60 months are generally more suitable for factor selection;

(v) Longer time series of 180 to 240 months should be considered for forecasting
test assets’ returns.

Outline. In addition to this Introduction, the current chapter is structured into
three more sections. In Section 2.2, we present the chosen methodology, built
upon the Stochastic Discount Factor model, how we explore the factor zoo
high-dimensional environment, traditional and new ways of setting the level of
sparsity, and time-variant windows for screening relevant factors - and predicting
assets’ returns. Section 2.3 presents obtained results and faces them with stricter
benchmarks for out-of-sample predictability (see Subsection 1.4.1). Finally, in the
2.4, we summarize contributions and results. The Appendix - Section 2.A - offers
complementary results for the Elastic Net regression.

2.2
Methodology

We adopt the Stochastic Discount Factor (SDF) model (see Cochrane, 2009),
as in recent works by Feng et al. (2020) and Sun (2024), to investigate the joint
explanation of cross-sectional returns. We present the SDF model in Subsection
2.2.1, before exploring how sparsity can be imposed in high-dimensional prob-
lems in Subsection 2.2.2, and proposing a methodology for guaranteeing a cer-
tain, ad hoc defined, degree of it - see Subsection 2.2.3.
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2.2.1
Model setup

Denoting the Stochastic Discount Factor (SDF) as m, we start from a usual
specification:

m := r−1
0 [1 − b′( f − E[ f ])], (2.1)

where r−1
0 is a constant zero-beta rate, f is a K × 1 vector of K factor returns and b

is the K × 1 vector of SDFs coefficients - interpreted as risk prices. Any admissible
value for the SDF factor m must satisfy the fundamental asset pricing equation,
i.e., E[Rm] = 0.

We aim to identify relevant factors from the vast array of factors available in
the literature by examining their impact on the SDF. Specifically, we seek factors
responsible for movements in the SDF, as evidenced by their non-zero risk prices,
i.e., these risk prices should reflect the marginal utility of the factors in explaining
the cross-section of average returns.

The existence of useless and redundant factors in the high-dimensional
environment of factor selection and building is a well-known problem. Useless
factors simply do not contain any relevant information for the cross-section of
asset returns, are not correlated with useful factors, and hence their prices are
zero. Redundant factors, on the other hand, have their effects explained by other,
relevant, factors and can be rewritten as a combination of them. In other words,
redundant factors have zero risk prices but are correlated with the relevant
factors.

The literature also distinguishes what is known as the risk premium, which
is measured by the second pass free parameter in Fama & MacBeth (1973)’s
regression. The covariance matrix of factor returns determines the relationship
between risk price and risk premium, which can be expressed as ζ = E[ f f ′]b, see
Cochrane (2009), where ζ denotes the K × 1 vector of risk premiums.

Despite such an embryonic relationship, price and risk premium have sub-
stantially distinct interpretations. The premium is related to an investor’s willing-
ness to hedge a certain risk factor, regardless of whether or not this factor helps
to price the average cross-section of returns. It is therefore possible for a factor
not included in the SDF model to exhibit a non-zero premium if it is correlated
with some useful factor(s). However, since our goal is to identify which factors
are relevant for pricing the average cross-section of asset returns, our attention
is focused on SDF loadings, i.e. risk prices, rather than risk premiums. The chal-
lenge lies in selecting only the relevant factors that contain unique information
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that is not captured by any other factor, and therefore have non-zero risk prices.

Back to the theoretical model, the fundamental asset pricing equation may
not hold in the real world, where the SDF factor m is unknown and must be
estimated from some model. To address this issue, we define the pricing error
(e(b)) as the deviation from zero of the fundamental asset pricing equation and
denote the SDF as m(b), unknown due to its dependence on the also unknown
risk price b. The pricing error can then be written as:

e(b) = E[Rm(b)]

= E[R]E[m(b)] + Cov(R, m(b))

= r−1
0 E[R]E[1 − b′( f − E[ f ])] + r−1

0 Cov(R, 1 − b′( f − E[ f ]))

= r−1
0 (E[R]− Cov(R, f )b)

= r−1
0 (µR − Cb),

(2.2)

where R is a N × 1 vector of excess return of N assets, µR := E[R] is the N × 1
vector of assets’ excess return expectation and C := Cov(R, f ).

As the pricing error quadratic form is defined as Q(b) = e(b)′We(b), where
W is some appropriate N × N weighting matrix, it is possible to estimate the risk
prices b by minimizing their quadratic error Q(b), as follows:

b̂ = argmin
b

Q(b)

= argmin
b

[(µR − Cb)′W(µR − Cb)],
(2.3)

leading to

b̂ = (Ĉ′ŴĈ)−1Ĉ′Ŵµ̂R, (2.4)

where Ĉ = Ĉov(R, f ) = (1/T)∑T
t=1(Rt − µ̂R)( ft − µ̂ f )

′, µ̂ f = (1/T)∑T
t=1 ft and

µ̂R = (1/T)∑T
t=1 Rt - notice that, as a constant, r0 could be disregarded at the

optimization problem. In this specification, b̂ is an empirical estimate of b̂, which
makes use of sample estimates of C and µR.

In choosing a functional form for the weighting matrix W, Ludvigson (2013)
proposes two options. When there are plenty of test assets, she recommends
a surprisingly simple choice: the identity matrix. This matrix ensures that the
weights are not tilted towards any particular subset of test assets, which can
be useful in situations where these assets have economic interpretation. Another
option is to set W := E(RR′)−1, which connects Q(b) to the Hansen-Jagannathan
(H-J) distance. According to Ludvigson (2013), in settings where test assets are
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somewhat limited (i.e., when K is large compared to N), using the H-J distance
leads to more stable estimators.

In addition, it is noteworthy that our model approximates the SDF through
a projection onto a specific subspace, as both anomaly factors and test assets are
constructed solely from the information on stocks’ returns. This approximation is
widely accepted in the literature that explores the high-dimensionality of the zoo
of factors - see Feng et al. (2020); Freyberger et al. (2020); Sun (2024).

In Section 1.4, we showed that our test portfolios are abundant and have
clear economic interpretations. Therefore, the identity matrix is the clear choice
for the weighting matrix W, and we can write the optimization problem as:

b̂ = argmin
b

[(µ̂R − Ĉb)′(µ̂R − Ĉb)] (2.5)

2.2.2
Achieving sparsity in a high-dimension environment

As discussed in Section 1.3, estimating Equation 2.5’s b̂ coefficients using
simple low-dimension techniques could be problematic, introducing possible bi-
ases and overfitting issues. Now we lean into machine-learning literature tech-
niques to estimate them, using the most widely used techniques, such as Elastic
Net (eNet), LASSO, and Adaptive LASSO (A-LASSO). These methods work by
adding a penalty term Ω(b) to Equation 2.5, such that:

b̂ = argmin
b

[(µ̂R − Ĉb)′(µ̂R − Ĉb)] + Ω(b), (2.6)

where Ω(b) varies depending on the regression technique - as discussed in
Subsection 1.3.2.

The penalty term Ω(b) is accompanied by a penalty parameter, λ, that
must be set by the researcher. In Subsection 1.3.2, we show the Ω(b) forms for
the most usual shrinkage regressions and classic methodologies for setting the
λ value, concluding that the Bayesian Information Criteria (BIC) emerges, for
our application, as the most suitable methodology for setting up our penalty
parameter.

We could have employed more complex regression techniques to reduce the
dimensionality of the SDF problem. For instance, Sun (2024) used the Ordered-
Weighted LASSO (OWL, see Figueiredo & Nowak, 2016), as it should allow for
the selection of more correlated regressors, while Freyberger et al. (2020) used
the adaptive group LASSO (Huang et al., 2010) to propose a nonparametric



Chapter 2. Applying the time-varying framework on a Stochastic Discount Factor
methodology 33

method for studying which characteristics provide incremental information for
the cross-section of expected returns. Despite the potential benefits of more
complex techniques, we chose to use simpler regression techniques to focus on
establishing the time-varying methodology (and the upcoming criterion to ensure
sparsity), ensuring that the results obtained are not a product of the possibly
superior technique applied.

While all the regression techniques discussed above impose some degree of
sparsity, it is possible that the selected factors still outnumber what the researcher
considers reasonable. In such cases, it may be useful to have a methodology that
guarantees a pre-defined degree of sparsity.

One way to force sparsity is by considering only the regressors with the
larger coefficient magnitudes, as done by Sun (2024) in his out-of-sample exercise.
The approach involves determining the maximum number of regressors (n) to
be considered in the analysis, and if the shrinkage process selects more than n
variables, only the top n variables, ranked accordingly, are retained.

Forcing sparsity in this manner has advantages, allowing for easily imple-
menting more drastic variable selection. However, this methodology may com-
promise the shrinkage theoretical foundation, as arbitrarily disregarding selected
regressors gives up the certainty of being backed by the chosen regression’s prop-
erties.

2.2.3
Ensuring sparsity: The Fixed Regressors Criterion

Can a pre-defined level of sparsity be ensured without compromising the
theoretical properties of the estimator?

To address this challenge, we propose a distinct criterion for setting the
penalization parameters in shrinkage regressions. The objective is to guarantee
that a specified number of regressors (as determined by the researcher) will have
non-zero coefficients. This criterion proves especially advantageous in the realm
of factor-based asset-pricing models, offering ad-hoc means to ensure the implicit
sparsity assumption inherent in models like the Fama-French 3/5, Carhart, and q-
4 factors (Fama & French, 1993, 2015; Carhart, 1997; Hou et al., 2015), by selecting
a penalty parameter that precisely returns some desired number of non-zero
coefficient regressors.
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The Fixed Regressors Criterion (FRC) determines the penalty parameter (λ)
through the following algorithm:

• Initialize an array of candidate values and perform the shrinkage regression
on them;

• Ensure that the desired number of final regressors is included in the range
of candidate λ’s:

– If the number of selected factors for the highest (lowest) candidate λ is
too low (high), adjust for lower (higher) values. Re-run the regression
for this new set of candidate λ’s;

• If no value precisely returns the desired number of regressors, narrow the
range:

– Set the new highest (lowest) possible value as the higher (lower) pe-
nalization that yields fewer (more) than the desired number of factors.

– Re-run the regression for this new array of candidate penalization
parameters;

• Repeat the above steps until at least one candidate value returns exactly the
desired number of factors with non-zero coefficients:

– As multiple penalization values may return the set number of relevant
regressors, choose the median of these values as the penalization pa-
rameter.

While implementing the FRC, the researcher should consider the specifics
of the chosen estimation technique, as some do not guarantee a monotonically
increasing number of selected factors as the penalization parameter decreases.
Additionally, although unlikely, we cannot guarantee that the exact desired num-
ber of regressors will be selected for any given penalty value. We recommend
selecting the median value from the highest penalization sequence of candidate
values to address the non-monotonicity issue and ceasing the search for the per-
fect lambda after several iterations, opting for the highest penalization that yields
one more relevant factor.1

1Concerning any additional factors, the researcher may choose what to do. If the data is scaled
and the absolute values of the coefficients are comparable, we suggest disregarding the factor with
the lower |β|, as suggested by Sun (2024). However, disregarding selected regressors means not
necessarily being supported by the chosen regression properties.
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2.3
Empirical analysis

We apply the factor selection methodology from Section 2.2 to the time-
varying framework and data described in Section 1.5, to scan the "zoo of factors"
- and reduce its dimension - using the LASSO shrinkage regression technique.2

Using BIC, we determine the penalization parameter by testing 100 values rang-
ing from 10−7 to 10−1.3 We test four periods - 60, 120, 180, and 240 months - for
both RWshrk and RWpred. Beware that our results do not account for trading and
slippage costs.

2.3.1
Shrinking the Zoo

We explore the efficacy of applying shrinking regressions to reduce the
complexity of the "zoo of factors". We begin setting the penalty parameter using
BIC. Table 2.1 displays the out-of-sample results of the pure alpha, cash-neutral,
trading strategies.

Table 2.1: Out-of-sample results - BIC penalty

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0091 0.0200 1.57 2.51
180 0.0091 0.0205 1.53 2.52
120 0.0080 0.0200 1.39 2.57
60 0.0076 0.0226 1.16 2.62

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0069 0.0281 0.85 2.24
180 0.0067 0.0289 0.81 2.24
120 0.0055 0.0291 0.66 2.35
60 0.0040 0.0319 0.43 2.40

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0078 0.0283 0.95 2.41
180 0.0079 0.0287 0.95 2.44
120 0.0070 0.0282 0.85 2.49
60 0.0044 0.0283 0.54 2.56

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0069 0.0281 0.85 2.65
180 0.0066 0.0280 0.82 2.72
120 0.0056 0.0278 0.70 2.81
60 0.0051 0.0315 0.56 2.94

Notes: This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-
short the 10% of stocks with the highest-lowest predicted returns, considering all selected factors
through LASSO, a penalization parameter set by BIC, for RWshrk ∈ [60, 120, 180, 240], and
RWpred ∈ [60, 120, 180, 240].

At first glance, the shrinkage regression results may not appear particularly
promising. The best Sharpe Ratio obtained (1.57, for RWshrk = 60, RWpred = 240)
is not able to surpass the benchmarks proposed - see 1.4.1. However, it is possible

2See Appendix 2.A.1 for Elastic Net (eNet) regression results.
3We also guarantee that the highest penalty returns at least one regressor and that the final

ratio between the highest and lowest tested values is 103.
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to observe a pattern, as Sharpe ratios appear to improve for shorter shrinkage, and
longer prediction, rolling windows.

2.3.2
Guaranteeing sparsity

As Section 1.3.1 states, a sparsity assumption that suggests that only a few
factors are truly relevant in explaining asset returns, while the rest can be dis-
regarded, has been implicitly present in asset pricing models since their incep-
tion. For instance, when a new factor is proposed, it is typically tested against a
benchmark that only includes a few key factors - a parsimonious representation
of the vast universe of potential factors. However, while shrinkage regression,
with hyper-parameters defined through BIC, can help achieve sparsity, it does
not guarantee it. Therefore, explicitly enforcing a certain sparsity degree in asset
pricing models may be beneficial.

Ensuring sparsity We now report results obtained ensuring sparsity utilizing
the Fixed Regressors Criterion (FRC), as described in Section 2.2.3 - see Tables 2.2
and 2.3.

Table 2.2 reports results obtained when applying the FRC for less severe
dimensional reduction. Notably, results generally improve when using the pro-
posed methodology, even surpassing the Fama-French benchmark in some cases -
FRC5, RWshrk = 60 and RWpred ∈ {180, 240}. Moreover, predictability improves
when selecting factors over a shorter window, forecasting returns considering a
longer window and considering a lower number of factors.

The role of sparsity is even more highlighted in Table 2.3, where we report
out-of-sample results obtained when imposing factor selection while fixing only
one or three pricing anomalies as relevant: FRC3 surpasses the benchmark’s
Sharpe ratio of 1.64 three times (RWshrk = 60 and RWpred ∈ {120, 180, 240}), while
FRC1 poses an incredible performance, having fourteen out of its sixteen portfolios
beating all proposed benchmarks.

On the one hand, the pattern of parameter sensibility observed in Tables
2.1 and 2.2 generally holds for Table 2.3, with FRC1 producing the best results,
accompanied by shorter shrinkage and wider forecasting periods. On the other
hand, if that pattern should hold, the best Sharpe ratio should have been observed
for FRC1, RWshrk = 60 and RWpred = 240, which is not true: the single best
performance gotten setting FRC1 and RWpred = 240, as expected, but associated
with RWshrk = 180.



Chapter 2. Applying the time-varying framework on a Stochastic Discount Factor
methodology 37

Table 2.2: Out-of-sample results - FRC penalty considering 5 and 10 factors

FRC 5

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0122 0.0226 1.87 2.36
180 0.0122 0.0235 1.79 2.43
120 0.0107 0.0235 1.58 2.54
60 0.0090 0.0243 1.29 2.67

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0103 0.0224 1.59 2.44
180 0.0098 0.0243 1.40 2.49
120 0.0089 0.0244 1.27 2.53
60 0.0078 0.0262 1.03 2.68

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0083 0.0228 1.26 2.43
180 0.0078 0.0253 1.07 2.42
120 0.0072 0.0265 0.94 2.47
60 0.0064 0.0270 0.83 2.60

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0084 0.0246 1.18 2.45
180 0.0092 0.0259 1.23 2.44
120 0.0080 0.0259 1.08 2.53
60 0.0087 0.0270 1.11 2.69

FRC 10

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0099 0.0240 1.43 2.78
180 0.0091 0.0248 1.27 2.82
120 0.0081 0.0244 1.15 2.89
60 0.0063 0.0248 0.88 3.04

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0072 0.0255 0.98 2.85
180 0.0061 0.0275 0.76 2.87
120 0.0051 0.0291 0.61 2.88
60 0.0039 0.0285 0.48 3.01

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0074 0.0251 1.02 2.81
180 0.0070 0.0257 0.95 2.84
120 0.0056 0.0266 0.73 2.92
60 0.0061 0.0276 0.76 3.07

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0066 0.0256 0.89 2.78
180 0.0070 0.0262 0.92 2.82
120 0.0063 0.0264 0.83 2.89
60 0.0042 0.0278 0.53 3.04

Notes: This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-
short the 10% of stocks with the highest-lowest predicted returns, considering all selected factors
through LASSO, a penalization parameter set by FRC (fixing 5 and 10 regressors), for RWshrk ∈
[60, 120, 180, 240], and RWpred ∈ [60, 120, 180, 240].

This dissonant result is interesting, as it indicates that it is possible to
obtain strong predictability over distinct time frames utilizing the proposed
methodology.

Since predictability tends to improve with fewer factors, shorter shrink-
age periods, and longer prediction windows, we advise practitioners to focus on
combinations in this direction, instead of pursuing the best-performing combina-
tion of parameters. We believe that the combination of FRC1, RWshrk = 60 and
RWpred = 240 has more evidence backing its results.

Finally, for those interested in trading costs, the turnover is also impacted
by parameters‘ variability, decreasing with the number of considered factors and
shrinkage window length, and increasing with the OLS window - unveiling
the same pattern observed for out-of-sample performance. A smaller turnover
associated with a lower number of relevant factors is interesting and could be a
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Table 2.3: Out-of-sample results - FRC penalty considering 1 and 3 factors

FRC 1

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0122 0.0201 2.09 1.24
180 0.0118 0.0209 1.95 1.31
120 0.0109 0.0222 1.71 1.35
60 0.0121 0.0231 1.81 1.54

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0115 0.0196 2.04 1.28
180 0.0112 0.0211 1.84 1.30
120 0.0106 0.0227 1.62 1.40
60 0.0107 0.0251 1.48 1.54

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0126 0.0199 2.19 1.33
180 0.0126 0.0215 2.04 1.35
120 0.0123 0.0231 1.85 1.38
60 0.0129 0.0250 1.79 1.49

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0112 0.0202 1.93 1.34
180 0.0118 0.0226 1.81 1.40
120 0.0114 0.0229 1.73 1.50
60 0.0128 0.0249 1.77 1.64

FRC 3

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0127 0.0214 2.06 2.02
180 0.0125 0.0217 2.00 2.12
120 0.0110 0.0219 1.74 2.16
60 0.0106 0.0232 1.58 2.38

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0095 0.0227 1.44 2.07
180 0.0093 0.0244 1.32 2.13
120 0.0089 0.0252 1.23 2.19
60 0.0091 0.0263 1.19 2.33

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0096 0.0207 1.61 2.13
180 0.0091 0.0229 1.38 2.14
120 0.0082 0.0242 1.17 2.15
60 0.0087 0.0247 1.22 2.29

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0106 0.0226 1.63 2.08
180 0.0108 0.0248 1.51 2.11
120 0.0097 0.0248 1.36 2.20
60 0.0100 0.0275 1.26 2.37

Notes: This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-
short the 10% of stocks with the highest-lowest predicted returns, considering all selected factors
through LASSO, a penalization parameter set by FRC (fixing 1 and 3 regressor(s)), for RWshrk ∈
[60, 120, 180, 240], and RWpred ∈ [60, 120, 180, 240].

byproduct of the persistence of relevant factors.

Our empirical investigation reveals some intriguing patterns. First, our
results suggest that factor sparsity is important, with Sharpe ratios generally
improving when considering fewer relevant factors. Additionally, shorter periods
for selecting factors tend to perform better, indicating that their relevance should
be observed close to the prediction time, i.e., shrinkage should be done in smaller
windows. Finally, it appears that longer periods for regressing selected factors’
returns (delayed by one period) over test assets’ returns are desirable, indicating
that return predictions usually perform better when made over longer time series.
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2.3.3
Facing benchmarks

After cross-examining the results presented in Tables 2.1, 2.2, and 2.3 with
the new benchmark performance on Table 1.2, we can see that outperforming the
proposed benchmark is not a simple task. Running the out-of-sample exercise
with the 3 Fama-French factors yields Sharpe ratios (gross of trading costs) as
high as 1.64 for RWpred = 180. For instance, no combination of parameters using
less severe shrinkage penalties - BIC and FCR10 - surpassed this benchmark.

Table 2.4: Outperforming hedge portfolios

Penalty RWshrk RWpred Mean SD Sharpe Turnovercriterion

FRC1 180 240 0.0126 0.0199 2.19 1.33
FRC1 60 240 0.0122 0.0201 2.09 1.24
FRC3 60 240 0.0127 0.0214 2.06 2.02
FRC1 120 240 0.0115 0.0196 2.04 1.28
FRC1 180 180 0.0126 0.0215 2.04 1.35
FRC3 60 180 0.0125 0.0217 2.00 2.12
FRC1 60 180 0.0118 0.0209 1.95 1.31
FRC1 240 240 0.0112 0.0202 1.93 1.34
FRC5 60 240 0.0122 0.0226 1.87 2.36
FRC1 180 120 0.0123 0.0231 1.85 1.38
FRC1 120 180 0.0112 0.0211 1.84 1.30
FRC1 60 60 0.0121 0.0231 1.81 1.54
FRC1 240 180 0.0118 0.0226 1.81 1.40
FRC5 60 180 0.0122 0.0235 1.79 2.43
FRC1 180 60 0.0129 0.0250 1.79 1.49
FRC1 240 60 0.0128 0.0249 1.77 1.64
FRC3 60 120 0.0110 0.0219 1.74 2.16
FRC1 240 120 0.0114 0.0229 1.73 1.50
FRC1 60 120 0.0109 0.0222 1.71 1.35

Notes: This table reports the portfolios presented on Tables 2.1, 2.2, and 2.3 that yielded better
annualized Sharpe ratios than the best-performing benchmark portfolio - presented on Table 1.2.

However, several hedge portfolios were able to outperform this stricter
proposed benchmark. As shown in Table 2.4, our findings suggest that the zoo of
factors can be reduced satisfactorily by utilizing even the most basic dimension-
reducing techniques - even after confronting them with a strict benchmark.
Specifically, our results show that when using monthly data in an SDF framework
shrunk by the LASSO, the most relevant factors should be selected by analyzing a
shorter period of approximately 60 months, predicting returns based on a longer
time series exceeding 180 months, and assuming significant pre-defined sparsity
by selecting fewer than 5 factors.
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2.4
Final considerations

In this chapter, we applied the time-varying framework introduced in Chap-
ter 1 to address the high dimensionality challenge in Stochastic Discount Factor
(SDF) models through penalization regressions.

We explored the assumption in traditional factor-based asset pricing mod-
els, where high sparsity among factors is often presumed. This assumption led
us to suggest a more flexible criterion for setting the penalization parameter in
shrinkage regressions: dynamically adjusting it to select a predetermined num-
ber of jointly relevant factors. This approach can benefit researchers with specific
prior beliefs about the number of factors to retain.

Our methodology was tested on a dataset comprising 80 established fac-
tors - plus the market factor. Using the LASSO, a widely recognized shrinkage
technique, we evaluated periods of 60, 120, 180, and 240 months for both factor
selection and return prediction. When applying the traditional Bayesian Infor-
mation Criterion (BIC) to set the penalization parameter, the results were under-
whelming. However, by implementing our Fixed Regressors Criterion (FRC) to
dynamically select a specified number of factors, we achieved superior results,
even outperforming all proposed stricter benchmarks.

Our findings indicate that shorter windows for factor selection and longer
windows for return prediction yield more favorable outcomes. This result aligns
with the hypothesis that factor relevance is best identified in the near term, while
the relationship between selected factors’ returns and test assets’ returns benefits
from estimation over a longer historical horizon.
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2.A
Appendix

2.A.1
Elastic Net results

Table 2.A.1: Out-of-sample results - BIC penalty

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0091 0.0215 1.47 2.56
180 0.0093 0.0233 1.38 2.56
120 0.0091 0.0224 1.40 2.58
60 0.0090 0.0233 1.33 2.61

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0087 0.0256 1.17 2.04
180 0.0081 0.0275 1.02 2.04
120 0.0072 0.0271 0.92 2.14
60 0.0073 0.0286 0.89 2.28

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0082 0.0292 0.98 2.18
180 0.0082 0.0295 0.96 2.21
120 0.0073 0.0291 0.87 2.24
60 0.0070 0.0294 0.82 2.30

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0063 0.0273 0.80 2.54
180 0.0061 0.0276 0.77 2.62
120 0.0049 0.0288 0.59 2.70
60 0.0042 0.0312 0.47 2.89

Notes: This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-
short the 10% of stocks with the highest-lowest predicted returns, considering all selected factors
through Elastic Net, a penalization parameter set by BIC, for RWshrk ∈ [60, 120, 180, 240], and
RWpred ∈ [60, 120, 180, 240].
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Table 2.A.2: Out-of-sample results - FRC penalty considering 5 and 10 factors

FRC 5

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0109 0.0229 1.65 2.36
180 0.0108 0.0235 1.59 2.45
120 0.0095 0.0240 1.37 2.53
60 0.0078 0.0235 1.15 2.73

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0081 0.0242 1.16 2.40
180 0.0080 0.0260 1.07 2.46
120 0.0066 0.0262 0.87 2.53
60 0.0062 0.0265 0.81 2.67

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0080 0.0239 1.15 2.41
180 0.0078 0.0265 1.02 2.43
120 0.0069 0.0276 0.86 2.47
60 0.0065 0.0271 0.83 2.60

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0072 0.0236 1.05 2.40
180 0.0081 0.0256 1.10 2.42
120 0.0073 0.0259 0.98 2.50
60 0.0080 0.0264 1.05 2.66

FRC 10

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0101 0.0253 1.38 2.75
180 0.0092 0.0257 1.25 2.82
120 0.0075 0.0251 1.04 2.87
60 0.0067 0.0233 1.00 3.03

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0073 0.0228 1.11 2.75
180 0.0066 0.0250 0.92 2.82
120 0.0059 0.0265 0.77 2.87
60 0.0051 0.0250 0.71 3.03

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0071 0.0260 0.95 2.75
180 0.0068 0.0281 0.83 2.82
120 0.0063 0.0293 0.74 2.87
60 0.0069 0.0277 0.86 3.03

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0066 0.0263 0.86 2.80
180 0.0075 0.0271 0.96 2.83
120 0.0074 0.0270 0.95 2.87
60 0.0054 0.0288 0.65 3.04

Notes: This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-
short the 10% of stocks with the highest-lowest predicted returns, considering all selected factors
through Elastic Net, a penalization parameter set by FRC (fixing 5 and 10 regressors), for RWshrk ∈
[60, 120, 180, 240], and RWpred ∈ [60, 120, 180, 240].
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Table 2.A.3: Out-of-sample results - FRC penalty considering 1 and 3 factors

FRC 1

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0122 0.0201 2.09 1.24
180 0.0118 0.0209 1.95 1.31
120 0.0109 0.0222 1.71 1.35
60 0.0121 0.0231 1.81 1.54

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0115 0.0196 2.04 1.28
180 0.0112 0.0211 1.84 1.30
120 0.0106 0.0227 1.62 1.40
60 0.0107 0.0251 1.48 1.54

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0126 0.0199 2.19 1.33
180 0.0126 0.0215 2.04 1.35
120 0.0123 0.0231 1.85 1.38
60 0.0129 0.0250 1.79 1.49

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0112 0.0202 1.93 1.34
180 0.0118 0.0226 1.81 1.40
120 0.0114 0.0229 1.73 1.50
60 0.0128 0.0249 1.77 1.64

FRC 3

RWshrk 60

RWpred Mean SD Sharpe Turnover

240 0.0112 0.0210 1.85 2.00
180 0.0108 0.0217 1.73 2.10
120 0.0095 0.0211 1.57 2.14
60 0.0087 0.0223 1.35 2.38

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0095 0.0212 1.56 2.01
180 0.0096 0.0230 1.45 2.09
120 0.0089 0.0234 1.31 2.17
60 0.0097 0.0257 1.31 2.32

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0095 0.0208 1.57 2.16
180 0.0094 0.0229 1.43 2.18
120 0.0085 0.0242 1.21 2.20
60 0.0085 0.0241 1.22 2.30

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0103 0.0217 1.64 2.08
180 0.0106 0.0237 1.55 2.12
120 0.0096 0.0236 1.42 2.20
60 0.0104 0.0269 1.34 2.35

Notes: This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-
short the 10% of stocks with the highest-lowest predicted returns, considering all selected factors
through Elastic Net, a penalization parameter set by FRC (fixing 1 and 3 regressor(s)), for
RWshrk ∈ [60, 120, 180, 240], and RWpred ∈ [60, 120, 180, 240].



3
Modifying traditional low-dimensional methodology to a high-
dimensional environment

Abstract. This chapter presents a novel time-varying framework de-
signed for high-dimensional, factor-based asset pricing models. The
framework employs shrinkage techniques in regressions across pricing
anomalies to identify statistically significant factors from a broad pool.
Emphasizing sparsity, the framework introduces methods for selecting
a limited number of impactful factors. Recognizing the implicit spar-
sity assumption in traditional models, this framework explicitly incor-
porates a similar scarcity principle during factor selection. We apply the
proposed framework to an extensive set of factors across multiple time
periods, demonstrating that simple, properly implemented techniques
can produce robust results. Overall, this chapter offers valuable tools for
researchers and practitioners, providing clear guidance on pricing fac-
tor selection while advocating for sparsity in high-dimensional models.
This chapter exposes the major contributions of the article The Factor
Games: May the p-values be ever in your favor.

Keywords: factor investing; shrinkage penalization; time-varying as-
set pricing; statistical significance.
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3.1
Introduction

As exposed previously in Section 1.2, the quest for factors that explain the
cross-section of expected returns has led to numerous contenders in the literature.
Nevertheless, Cochrane (2011) contends that researchers may have overstepped
by introducing an overwhelming multitude of factors, making it impractical and
conceptually unwise to consider them collectively. Naming this phenomenon
the factor zoo, he cautions against the indiscriminate use of numerous factors to
explain average cross-sectional returns.

Feng et al. (2020) addressed the "factor zoo" challenge by employing a
double-LASSO selection procedure (see Belloni et al., 2014), favoring more par-
simonious asset pricing models. Emphasizing out-of-sample predictability, ? uti-
lized the Ordered Weighted LASSO (OWL - Figueiredo & Nowak, 2016) to pin-
point factors capable of jointly explaining cross-sectional returns. Likewise, Frey-
berger et al. (2020) employed the Adaptive Group LASSO (see Huang et al., 2010)
to "non-parametrically dissect the factor zoo".

These studies, similarly to the exercise in Chapter 2, tackle the dimension-
ality issue of the factor zoo within a framework based on the Stochastic Discount
Factor (SDF) model, deriving the shrinkage regression from the SDF error expres-
sion. Despite their ingenuity, this approach diverges from conventional method-
ologies for assessing the statistical significance of pricing factors in lower dimen-
sions. Usually, classic methodologies involve spanning the proposed factor’s re-
turns against a given set of benchmark factors and scrutinizing the statistical sig-
nificance of the intercept, as seen in studies by Jensen et al. (2023), Frazzini &
Pedersen (2014), and Loh & Warachka (2012).

Similarly to approaches applied to the Stochastic Discount Factor (SDF)
challenge, shrinkage regressions can be integrated into the spanning factors
framework to address the dimensionality issue. One could use a shrinkage
technique to factor spanning regressions and estimate the p-value of the in-
tercept. Estimating a confidence interval for shrinkage regression coefficients
isn’t straightforward, given the bi-modal distributions of regressors’ coefficients
(Meinshausen & Bühlmann, 2006). However, refined techniques proposed by
Meinshausen et al. (2009), building on the foundation laid by Wasserman &
Roeder (2009), offer promising avenues for estimating the statistical significance
of the LASSO’s intercept - with tailored adjustments to accommodate time-series
data, one may emulate lower-dimensional solutions in high-dimensional envi-
ronments.
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The LASSO, known for shrinking coefficients toward zero, faces challenges
due to multicollinearity, which is prevalent in the returns of pricing anoma-
lies: distinguishing the genuine effects of individual regressors becomes difficult
in such scenarios. Coefficients associated with correlated features may undergo
shrinkage toward zero, even if one or both harbor true effects. Efforts by Frey-
berger et al. (2020) and Sun (2024) have deployed adaptations of the raw LASSO
within the SDF framework to address this challenge. Another approach to miti-
gate major multicollinearity issues involves conducting a Variance Inflation Fac-
tor analysis before shrinkage regressions, similarly to Green et al. (2017).

Again, the careful application of shrinkage is crucial when employing any of
the aforementioned techniques, requiring researchers to calibrate the penalization
parameter(s) carefully. Interestingly, any of the classic methodologies, like K-
fold Cross-Validation (CV) (Stone, 1974), Bayesian Information Criterion (BIC)
(Schwarz, 1978), and Akaike Information Criterion (AIC) (Akaike, 1974) focus on
ensuring a predefined level of sparsity.

Contributions for the literature. We extend the classical factor returns spanning
methodology to adapt to the dimensionality curse imposed by the factor zoo.
This framework (see Chapter 1) enables the distinction between the time series
used to handle high multicollinearity between regressors, the one for estimating
spanning regressions’ intercepts to identify relevant factors, and the final one to
predict out-of-sample returns.

Moreover, we suggest methods to ensure a certain level of sparsity, both in
shrinkage regressions (FRC - see Subsection 2.2.3) and in assessing the relevance
of pricing anomalies. In our study, we used LASSO regression for spanning
regressions, employing the traditional Bayesian Information Criterion and the
proposed Fixed Regressors Criterion.

Findings. Among the main results of this essay are:

(i) The factor spanning regressions technique surpassed the proposed, stricter,
benchmarks using a broad combination of parameters;

(ii) Using a common significance level of 0.10 for factor p-values often results
in underwhelming out-of-sample performance, as the average p-value is
higher than ideal and few factors are deemed relevant;

(iii) Imposing a predefined level of sparsity, using a fixed number of factors
ranked by their p-values, substantially enhances predictability;

(iv) Dissociating time periods of interest positively impacts the factor zoo di-
mension reduction problem;
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(v) Shorter factor selection and longer returns prediction windows are gener-
ally preferred;

(vi) Results from setting the LASSO’s penalty parameter using the FRC5 crite-
rion for the factor-spanning regressions are slightly superior.

Outline. The current chapter is organized into four sections. The Introduction
presented related literature and achievements obtained. We expose the chosen
methodology in Section 3.2, built upon the classic, low-dimensional, spanning
factors returns idea, and how we adapt it for the factor zoo high-dimensional
environment. Section 3.3 presents obtained results, comparing them with the
benchmarks presented in Subsection 1.4.1. Finally, contributions and results are
summarized in Section 3.4. The Appendix - Section 3.A - offers plots for time-
variant factor statistical significance and complementary results for the Elastic
Net regression.

3.2
Methodology

We evaluate the statistical significance of each factor individually through
a series of spanning regressions, wherein we assess whether a combination of
the other pricing anomalies can account for each factor’s abnormal returns. This
approach draws inspiration from low-dimension studies by Jensen et al. (2023),
Frazzini & Pedersen (2014), and Loh & Warachka (2012).

We delineate the classical approach for assessing the significance of pric-
ing anomalies in Subsection 3.2.1. Subsection 3.2.2 follows, being dedicated to
adapting that classical approach to the high-dimensional environment of the fac-
tor zoo. This includes addressing high multicollinearity, developing a methodol-
ogy for estimating statistical significance, introducing distinct criteria for setting
the penalization parameter in shrinkage regressions, and proposing two criteria
for assessing pricing factors’ relevance within our framework.

3.2.1
Assessing factors’ significance in a low-dimensional environment

Denoting f as a proposed pricing anomaly, it is possible to assess f ’s
statistical significance by running a regression of its returns (ret f ) over some
benchmark factor model, as shown in Equation 3.1 below.

ret f ,t = α + ∑
j∈Fbench

β jret f j,t + ϵ f , (3.1)
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where ret f j,t represents the returns of a pricing factor that belongs to the set of
relevant factors of the benchmark model (Fbench) at time t, and ϵ f is the error
term.

Take the classical Fama-French 3-factors model as a benchmark model
example: ret f j would represent the returns of market, size, and value factors -
see Fama & French (1993). Factor f will be considered relevant in pricing returns
if its alpha is significant, i.e., if Equation 3.1’s intercept presents a low enough p-
value. This idea is broadly used in the pricing anomalies literature, as in articles
like Jensen et al. (2023), Frazzini & Pedersen (2014), and Loh & Warachka (2012).

3.2.2
Spanning factors’ returns in a high-dimension environment

We propose an approach that equalizes consideration for each potentially
relevant pricing anomaly within the high-dimensional zoo of factors while al-
lowing for time-varying importance (see Section 1.5), seeking to identify which
factors have been the most statistically relevant. This is achieved by slightly mod-
ifying Equation 3.1. The model is as follows:

ret fi,t = α fi + ∑
j ̸=i,j∈F

β jret f j,t + ϵ fi , (3.2)

where ret fi,t is the return of factor fi at time t, F is the set of all available pricing
factors, αi is the intercept of the regression, β j is the linear coefficient for factor f j,
and ϵ fi is the error term.

The idea is to estimate each factor’s alpha (α fi), calculate its p-value, and
finally consider the most statistically relevant ones. If done multiple times, us-
ing rolling windows of time series, this framework should capture how factor
relevance has changed over time.

The factor zoo is a well-known high-dimensional environment, therefore it
is not advisable to estimate Equation 3.2 using a simple OLS regression. This is
especially true as the object of interest will be the p-value of the intercept, and the
more regressors we consider on the right-hand side of the model, the less likely it
is to find a statistically significant intercept, as overfitting becomes a latent issue.

A viable approach to address high dimensionality is applying a shrinkage
technique like LASSO (Tibshirani, 1996) to estimate the model in Equation 3.2.1

However, four concerns must be addressed when implementing this type of
regression:

1Results for the Elastic Net (Zou & Hastie, 2005) are available in the Appendix 3.A.2.
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1. Regressors’ multicollinearity can be detrimental when estimating associ-
ated coefficients, as LASSO’s coefficients present higher standard deviations
when regressors are highly correlated. We eliminate some candidate factors
to bypass any possible problem caused by regressors’ correlation;

2. Ordinarily, estimating the p-values for the LASSO’s coefficients is a rather
tricky exercise. We apply a regression technique that will calculate an unbi-
ased estimation of the LASSO intercept’s p-value, accounting for situations
where the data is presented as a time series;

3. The LASSO regression is a technique sensitive to its penalization parame-
ters. The literature provides some methodologies for setting it, like the in-
formation criteria and cross-validation, but none guarantee a certain spar-
sity level. We apply the proposed FRC (see Subsection 2.2.3) to ensure some
desired sparsity degree;

4. Returns’ predictions are notably known for being quite challenging, usu-
ally accompanied by low statistical significance. However, there may be a
compelling argument to not only consider relevant factors with low enough
p-values: we defend ranking factors according to their statistical significance
and using a researcher-defined number of relevant factors.

Avoiding extreme multicollinearity Subsection 1.2.2 introduces factor models’
multicollinearity issue and clarifies that it does not bias estimate slope coeffi-
cients, despite bumping up their standard errors. However, it imposes a challenge
for applying the LASSO methodology, as it may drop correlated covariates that
could be relevant.

Green et al. (2017) proposes a classic solution to mitigate the effects of
multicollinearity: Variance Inflation Factors (VIFs). VIFs are defined as:

VIFi =
1

1 − R2
i

, (3.3)

where R2
i denotes the unadjusted coefficient of determination when regressing

the i-th independent variable on all others.

The closer R2
i is to zero (one), the less (more) correlated the ith independent

variable is to the others, implying that multicollinearity is less (more) likely to
exist. The researcher then chooses a threshold for the higher VIF she will accept,
disregarding all independent variables that exceed this set value - Green et al.
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(2017) removes factors for which VIFi > 7. Used properly, this metric should
capture how well the other factors’ returns explain a given factor’s returns.

We employ a procedure similar to Green et al. (2017) to address extreme
factors’ multicollinearity. However, we propose a few simple modifications to
ensure that there is no look-ahead bias in the analysis. In their analysis, Green
et al. (2017) calculate candidate factors’ VIFs considering all available data. While
this approach posed no major harm to their study focused on the cross-section of
returns, our study allows for time-variant factors significance. Removing factors
based on full-sample multicollinearity introduces a clear source of look-ahead
bias. Therefore, we conduct the VIF analysis in rolling windows, considering data
available only before the time of interest.2

Furthermore, we remove high VIF factors in decreasing order, one at a time.
Traditionally, VIF values are calculated for all independent variables simultane-
ously, with those above a specified threshold being excluded. However, two vari-
ables could present a VIF higher than the threshold, and after removing one of
them from the pool of independent variables, the other variable’s VIF could po-
tentially decrease to fit the acceptance level. To account for this behavior, we com-
pute the VIF value for all candidate factors, remove only the one with the highest
VIF, and then recalculate the VIF for all remaining factors - repeating the process
until only factors with low enough Variance Inflation Factors survive.

Estimating intercept’s p-value In lower dimensions, where simple OLS regres-
sion can be used without major overfitting concerns, verifying the statistical sig-
nificance of the intercept in Equation 3.2 is straightforward. However, in higher
dimensions, especially when applying shrinkage regressions, it becomes way
more challenging.

Meinshausen et al. (2009) proposed a technique for calculating the intercept
p-value for high-dimensional regressions, extending the concept of splitting the
data into two parts, one for reducing the problem’s dimensions and the other for
applying classical variable selection techniques, originally proposed by Wasser-
man & Roeder (2009).3

However, their methodology does not account for time-series data - there-
fore, our bootstrap procedure must consider the specificities of such data. To
achieve this, we modify the simple bootstrap procedure used by Meinshausen
et al. (2009), employing a block bootstrap. For simplicity, we employ a non-

2Reefer to Section 1.5 for details on the time-variant framework.
3Wasserman & Roeder (2009) results are based on a single-split, whereas Meinshausen et al.

(2009) proposed a multisplit method to avoid the randomness caused by data dependence.
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overlapping blocks procedure (see Hall, 1985; Carlstein, 1986).

Let B represent the total number of bootstrap repetitions. For each b =

1, ..., B:

1. Randomly split the dataset into two disjoint groups, Db
shrk and Db

p−val:

– This split must be done in blocks, as our data is of time-series-nature;

2. Run the shrinkage regression, estimating the set of active predictors (F̃b),
using data from Db

shrk:

– F̃b = {j, βj ̸= 0}, after running the shrinkage in Equation 3.2;

3. Using only Db
p−val, fit the selected factors in F̃b with Ordinary Least Squares

and calculate the p-value for the intercept, Pb
αi

.

This procedure leads to a total of B p-values Pb
αi

- and their suitable summary
statistics are quantiles (see Meinshausen et al., 2009). For γ ∈ (0, 1), define

P̃αi(γ) = min{1, qγ([Pb
αi

/γ; b = 1, ..., B])}, (3.4)

where qγ(·) is the empirical γ-quantile function.

In Equation 3.4, we provide a p-value for any fixed 0 < γ < 1. However,
selecting γ appropriately is not straightforward, and searching for its optimal
value does not guarantee error control. To determine the final p-value, we can
adopt an adaptive approach that selects a suitable quantile value using a data-
driven methodology. Let γmin ∈ (0, 1), typically set to 0.05, be a lower bound for
γ. We then define the final p-value as:

Pαi = min{1, (1 − log γmin) inf
γ∈(0,γmin)

P̃αi(γ)} (3.5)

We acknowledge that both the Bonferroni correction (Bonferroni, 1936) -
applied after the bootstrap’s final step — and the Benjamini-Hochberg procedure
(Benjamini & Hochberg, 1995) — employed after calculating the final p-values
for all factors’ intercepts — are alternatives for addressing possible data mining
concerns. However, the results obtained in the empirical analysis, exposed in
Section 3.3, led us to conclude that these concerns were unnecessary. If anything,
higher intercepts’ p-values would have led to a potentially harmful decrease in
out-of-sample portfolio performance.

Setting up the penalization parameter The severity of dimensional reduction
in shrinkage techniques like LASSO is closely tied to penalty parameter values,
and setting their values using classic techniques - such as CV, BIC, or AIC -
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won’t guarantee either a stable or desirable number of factors survive the factor
shrinkage process over.

This is particularly significant given that our methodology relies on assess-
ing intercepts’ p-values: the greater the number of factors with nonzero β j coeffi-
cients in Equation 3.2, the less likely it is for α fi to differ significantly from zero.

To address this challenge, we proposed a different criterion for setting the
penalization parameters in shrinkage regressions in Subsection 2.2.3. The objec-
tive is to ensure that a predetermined number of regressors (as determined by the
researcher) will possess nonzero coefficients. This criterion could be especially
advantageous for the current application, offering ad-hoc means to ensure the im-
plicit sparsity assumption inherent in models like the Fama-French 3/5, Carhart,
and q-4 factors (Fama & French, 1993, 2015; Carhart, 1997; Hou et al., 2015), by se-
lecting a penalty parameter that precisely returns the desired number of nonzero
coefficient regressors.

In our empirical analysis (see Section 3.3), we use both classic (BIC) and
proposed (FRC) methodologies to impose penalization in the LASSO setting. This
approach enables us to access the impact of the number of factors considered in
the factor model, as using BIC will permit a varying number of relevant factors in
Equation 3.2, while FRC fixes nonzero beta factors to a desirable number, possibly
comparable to low-dimensional models set sparsity.

Assessing factor relevance The estimation of factors’ intercepts p-values em-
phasizes the relevance of factors with smaller p-values. Statistically correct ap-
proaches for selecting relevant factors usually involve stipulating a significance
level and considering regressors with Pα fi

lower than that level.

However, this idea may not be optimal in environments where predictabil-
ity is, despite desirable, challenging, resulting in relatively large p-values. This
is particularly true in fields such as return predictability, where regressions of-
ten have less-than-ideal explanatory power. In some cases, none of the candidate
factors may generate p-values small enough to be considered significant. Con-
versely, there may even be instances where too many factors survive the shrink-
age process, leading to an unwieldy number of factors to account for.

Given these concerns, instead of a fixed significance level, we suggest
fixing the number of relevant factors, allowing researchers to specify the desired
number of factors in their model. We believe that this could improve out-of-
sample predictability.

Given this approach, we can impose the same silent sparsity assumption of
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classic asset pricing models, where only a handful of factors are considered. How-
ever, instead of selecting factors solely based on financial or economic intuition,
we rely on the data, using statistical significance to identify relevant factors. This
approach can also support extreme sparsity levels, such as models using only the
factor with the single lowest p-value.

3.3
Empirical analysis

This analysis applies the methodology from Section 3.2 to reduce the di-
mensionality of the factor zoo by investigating the interactions between factor
returns. Each factor’s returns are compared against all others using the LASSO
methodology to identify factors capable of generating statistically significant in-
tercepts in the spanning regression (refer to Equation 3.2). The VIF methodology4

uses a rolling window (RWVIF) of 240 months, while three window lengths are
tested for both RWshrk and RWpred (120, 180, and 240 months).

To determine the shrinkage penalization parameter, we consider 100 pos-
sible values, with initial values set at 10−4 and 10−1 for the lowest and highest
possible penalization parameters, respectively.5 The block bootstrap procedure is
employed with eighty repetitions of blocks of five observations.

Results are presented for two approaches to select the shrinkage penaliza-
tion parameter: the Bayesian Information Criterion (BIC) and the proposed Fixed
Regressors Criterion (FRC), which fixes five regressors within the spanning re-
gression.

3.3.1
Accounting for multicollinearity

The empirical analysis begins tackling potential issues arising from extreme
multicollinearity among pricing anomalies. This concern is addressed using the
Variance Inflation Factor (VIF) criterion, assessing each factor’s returns based on
the R2 of regressions using all other factors as predictors.

The results of this procedure, conducted with a rolling window of 240 pe-
riods, are presented in this section. Figure 3.1 illustrates the number of factors
that survive this process over time, indicating a relatively constant count of ac-
cepted factors throughout the sample period. Most periods show an accepted
factor count between 60 and 64, with an average of approximately 18.6 factors re-

4Threshold for accepted VIF value is 10 - a little more permissive than Green et al. (2017).
5When using the BIC, we guarantee that at least one factor survive the shrinkage and that the

ratio between the highest and lowest penalty values tested is 103.
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moved. Notably, there is a discernible increase in the number of factors accepted
by the VIF analysis after the second half of 2019, suggesting a potential decrease
in overall multicollinearity among pricing anomalies.

Figure 3.1: Pricing anomalies accepted by the Variance Inflation Factor control
through time

Notes: The plot reports the number of factors that survived the VIF analysis throughout all the
available periods.

Complementing the analysis, Table 3.1 lists all the anomalies rejected after
the VIF procedure for at least one period. It reveals that seven candidate pricing
factors were consistently disregarded due to multicollinearity, while seventeen
factors were discarded in at least 80% of the time series.

Furthermore, our results demonstrate notable stability in identifying factors
prone to multicollinearity issues: nineteen of the thirty-one pricing anomalies
rejected at least once failed the VIF criterion in over 60% of periods.

3.3.2
Reducing dimensionality

After addressing high multicollinearity, our next step was to select relevant
factors and reduce the dimensionality of the factor zoo: we proceeded to estimate
the p-value of the intercept in spanning regressions - see 3.2 - to guide the
selection process.

The empirical analysis uses LASSO-based shrinkage and evaluates BIC and
FRC5 methodologies for penalty parameter selection. P-values were estimated
using three distinct rolling windows (RWshrk) of 120, 180, and 240 months.6

6As the p-value estimation methodology requires splitting the data into two disjoint parts, a
shorter rolling window of 60 periods, used in Chapter 2, was not feasible.
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Table 3.1: Summary of pricing anomalies rejected by the Variance Inflation
Factor control

Factor Rejections Percentage Factor Rejections Percentage
baspread 265 100.0% quick 219 82.6%
beta 265 100.0% roeq 176 66.4%
betasq 265 100.0% agr 160 60.4%
cash 265 100.0% stdacc 125 47.2%
lev 265 100.0% pchsaleinv 95 35.8%
retvol 265 100.0% roaq 91 34.3%
zerotrade 265 100.0% ep 72 27.2%
idiovol 262 98.9% currat 46 17.4%
mom6m 262 98.9% bm 30 11.3%
dy 260 98.1% gma 24 9.1%
stdcf 258 97.4% roavol 21 7.9%
std_turn 253 95.5% absacc 10 3.8%
turn 251 94.7% pchsale_pchinvt 6 2.3%
salecash 245 92.5% maxret 4 1.5%
ill 242 91.3% invest 1 0.4%
sp 232 87.5%

Notes: This table lists all factors rejected by the VIF analysis at least once, and reports the number
of times the factors presented multicollinearity issues - and the percentage of available periods
they were rejected. The abbreviation is consistent with Green et al. (2017) and Sun (2024).

Table 3.2 summarizes the results obtained, shedding light on several inter-
esting aspects. Firstly, our methodology is conservative in estimating p-values,
with a relatively small number of factors yielding valid p-values, reaching ap-
proximately 13.4% of candidates.7 Moreover, the number of factors with valid
p-values decreases along the time series length used for regression.

Table 3.2: Spanning factors returns shrinkage outcome

Penalty style RWshrk
Average # of valid Average # of % of periods with

p-values p-values < 0.10 zero p-values < 0.10

BIC 120 10.00 1.09 34%
BIC 180 9.37 1.18 32%
BIC 240 7.15 1.24 34%
f5 120 10.69 1.24 30%
f5 180 9.99 1.20 35%
f5 240 7.15 1.12 36%

Notes: This table summarizes the outcomes of applying the LASSO regressions over the factors
spanning regressions, reporting the average number of valid p-values, i.e., p-values under 1.0,
the average number of p-values under the threshold of 0.10, and the percentage of time that any
factor presents associated p-value smaller than 0.10, setting shrinkage penalization parameter
through BIC of FRC (fixing 5 regressors - f5), and different values for RWshrk.

Considering all aforementioned aspects, employing the FRC5 for setting the
shrinkage penalization and conducting regressions using 120-period windows
produced the most favorable results. This approach yielded the highest average

7Meinshausen et al. (2009) methodology provides a conservative approach to family-wise
error rate (FWER) control, similar in spirit to Holm (1979). If many null-hypotheses rejections
were to happen, the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) could be
considered.
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number of valid p-values, the highest average of factors with low p-values, and
the lowest percentage of periods with no factor exhibiting a p-value below 0.10.
However, there is no clear indication that a particular penalty style or RWshrk is
optimal, as there is no evidence of a relationship between RWshrk and the overall
level of statistical significance of the factors’ p-values. Additionally, there is no
discernible time-variant behavior, as illustrated by plots in the Appendix 3.A.1.

An elevated number of periods without statistically significant pricing fac-
tors could significantly undermine the performance of a hedge portfolio based on
the forecasted returns of test assets — a common approach in the literature ap-
plied in this study — as it would frequently lead to deallocation. Moreover, the
relatively low statistical significance is not entirely unexpected, given that time-
varying asset pricing operates within a particularly noisy environment. There-
fore, a method that rejects all pricing factors more than 30% of the time may be
overly selective.

Sailing through the turbulent sea of pricing factors, focusing on the most
promising options, regardless of their individual p-values, might be interesting.
Rather than setting a threshold value for p-value, we can instead designate a de-
sired number of factors to be considered relevant and select those with the high-
est statistical significance, i.e., the lowest p-values — even if they exceed some
typical acceptance threshold. This proposal, involving an ad-hoc determination of
the number of relevant factors, also aligns with the silent sparsity assumption
of classic asset pricing models. Just as the literature accepts classic models like
Fama-French (see Fama & French, 1993, 2015), or Carhart and q-4 factors (see
Carhart, 1997; Hou et al., 2015), with only a handful of pricing factors, why not
let a statistical model dictate comparable sparsity levels without relying on prior
qualitative information?

As p-values are comparable in magnitude and a matter of statistical faith,
we believe that bending traditional beliefs to navigate turbulent waters with any
compass can potentially support the navigator’s decision-making.

3.3.3
Out-of-sample results

We will now present the results obtained by applying the proposed method-
ology - see Section 3.2. We begin with the results of using the BIC criterion in
the spanning regression, subsequently discussing the results obtained by fixing
five relevant regressors (FRC5). In each exposition, we initially present results
obtained using only factors whose p-values are lower than 0.10, followed by the
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presenting results using one, three, or five factors with the lowest p-value(s).

BIC penalization Results obtained using the BIC for penalization in the span-
ning regressions, with a significance threshold set at p-values under 0.10, are pre-
sented in Table 3.3, showcasing not that impressive performances.

Table 3.3: Out-of-sample results - BIC penalty and p-values under 0.10

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0088 0.0205 1.49 1.38
180 0.0085 0.0223 1.32 1.38
120 0.0088 0.0237 1.29 1.41

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0086 0.0246 1.21 1.39
180 0.0092 0.0258 1.23 1.40
120 0.0096 0.0261 1.27 1.40

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0100 0.0247 1.40 1.35
180 0.0104 0.0254 1.41 1.36
120 0.0102 0.0262 1.35 1.34

Notes: This table reports out-of-sample monthly mean returns and associated standard deviations,
annualized Sharpe ratios, and monthly average turnover of hedge portfolios going long-short
the 10% of stocks with the highest-lowest predicted returns, considering factors with associated
p-values lower than 0.10, setting shrinkage penalization parameter through BIC, for different
combinations of RWshrk and RWpred.

At first glance, an uninformed reader might find the overall gross Sharpe
Ratios above unity somewhat impressive. However, none of the rolling window
combinations surpassed the benchmark (see Section 1.4.1), indicating, at most, a
promising direction rather than significant performance gains.

The relatively underwhelming performance can be attributed to the method
for selecting relevant factors, a p-value threshold, which results in numerous
periods where constructing long-short portfolios becomes infeasible due to the
absence of relevant factors for predicting test asset returns.8 Consequently, there
are many instances where the returns of the hedge portfolios are zero, thus
diluting the mean returns and undermining the obtained Sharpe ratios.

Table 3.4 presents the results obtained when selecting a predetermined
number of factors as relevant, using the lowest p-values obtained for each period
for ranking, revealing more promising out-of-sample performances.

8As demonstrated in Table 3.2, when employing the BIC penalization, there are instances
where no factor exhibits a p-value under 0.10, accounting for at least 32% of the time.
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Table 3.4: Out-of-sample results - BIC penalty and 1, 3, and 5 lowest p-values

Lowest p-value

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0130 0.0231 1.95 1.40
180 0.0135 0.0247 1.89 1.41
120 0.0126 0.0254 1.72 1.39

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0121 0.0235 1.79 1.38
180 0.0129 0.0252 1.78 1.36
120 0.0130 0.0258 1.74 1.37

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0119 0.0252 1.64 1.37
180 0.0121 0.0268 1.56 1.41
120 0.0120 0.0276 1.51 1.48

3 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0111 0.0231 1.67 2.15
180 0.0113 0.0245 1.61 2.20
120 0.0116 0.0260 1.54 2.30

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0122 0.0261 1.63 2.10
180 0.0129 0.0274 1.62 2.06
120 0.0132 0.0279 1.64 2.12

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0140 0.0265 1.83 2.17
180 0.0144 0.0271 1.85 2.17
120 0.0144 0.0277 1.80 2.27

5 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0108 0.0271 1.38 2.52
180 0.0108 0.0274 1.37 2.54
120 0.0111 0.0281 1.37 2.64

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0115 0.0283 1.41 2.45
180 0.0118 0.0292 1.40 2.45
120 0.0119 0.0302 1.36 2.54

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0115 0.0297 1.34 2.49
180 0.0111 0.0299 1.29 2.50
120 0.0114 0.0301 1.31 2.55

Notes: This table reports out-of-sample monthly mean returns and associated standard deviations,
annualized Sharpe ratios, and monthly average turnover of hedge portfolios going long-short the
10% of stocks with the highest-lowest predicted returns, considering factors with the lowest 1,
3, and 5 associated p-values, setting shrinkage penalization parameter through BIC, for different
combinations of RWshrk and RWpred.

Hedge portfolios’ mean returns reported in Table 3.4 exhibit improved
Sharpe ratios, particularly when considering a smaller number of regressors, as
shown in the first two blocks. Generally, smaller values for RWshrk and higher
values for RWpred tend to perform better. However, an intriguing aspect derived
from the presented results is that there is no clear optimal value for RWshrk and
RWpred to achieve the highest Sharpe ratios. The best value (1.95) is found in the
pair (RWshrk = 120; RWpred = 240), while the third-best result (1.85) is observed
in the combination of (RWshrk = 240; RWpred = 180).

Out-of-sample results also indicate that researchers should aim for a high
level of sparsity, selecting at most three factors when pricing asset returns. Most
remarkably, the best outcomes are achieved when the maximum degree of spar-
sity is enforced. This finding suggests that, within our framework, the noise in
the factor zoo is substantial enough that selecting only the most relevant pricing
factor during each shrinkage period yields better results.

Finally, it is noteworthy that turnover also increases with the number of
factors considered. This is a consequence of the persistence of the selected fac-
tor(s). Despite allowing for monthly changes, this framework for factor selection
does not impose frequent and significant alterations in the relevant factors.9 This
observation supports the notion of opting for a more sparse factor asset-pricing

9Qualitative lenses are put upon the selected factors in Chapter 4.
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model, as lower turnovers translate to more favorable trading conditions and re-
duced trading and slippage costs.

FRC5 penalization Similar to its BIC counterpart, fixing five regressors in the
spanning regressions before selecting factors with p-values under 0.10 also yields
unimpressive results, as shown in Table 3.5. A comparison with Table 3.3

Facing Tables 3.5 and 3.3, overall results are very similar, and none of the
tested portfolios was able to yield high enough Sharpe ratios to surpass the Fama-
French-based benchmark.

Table 3.5: Out-of-sample results - FRC, fixing 5 regressors, (f5) penalty and
p-values under 0.10

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0088 0.0205 1.49 1.38
180 0.0085 0.0223 1.32 1.38
120 0.0088 0.0237 1.29 1.41

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0086 0.0246 1.21 1.39
180 0.0092 0.0258 1.23 1.40
120 0.0096 0.0261 1.27 1.40

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0100 0.0247 1.40 1.35
180 0.0104 0.0254 1.41 1.36
120 0.0102 0.0262 1.35 1.34

Notes: This table reports out-of-sample monthly mean returns and associated standard deviations,
annualized Sharpe ratios, and monthly average turnover of hedge portfolios going long-short the
10% of stocks with the highest-lowest predicted returns, considering factors with associated p-
values lower than 0.10, setting shrinkage penalization parameter through FRC, fixing 5 regressors,
for different combinations of RWshrk and RWpred.

Results obtained with the fixed five regressors criterion for the spanning
regressions and selecting the lowest one, three, and five p-values for relevant
factors are displayed in Table 3.6. Once again, there is a clear parallel with results
from Table 3.4. However, using the FRC5 criterion, some portfolios’ Sharpe ratios
were greater than 2.0, surpassing the best out-of-sample Sharpe ratio obtained
when using the classic BIC: 1.95.

Again, as in Chapter 2, results advocate for a high sparsity level, and choos-
ing only one factor at a time appears to be the superior approach — especially
considering the lower turnover imposed. Overall, results tend to improve when
considering smaller shrinkage windows (RWshrk ∈ {120, 180}), longer prediction
time series (RWpred ∈ {240, 180}), and a lower number of factors considered (only
the lowest p-value). Nevertheless, this is not always the case: good results were
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Table 3.6: Out-of-sample results - FRC, fixing 5 regressors, (f5) penalty and 1, 3,
and 5 lowest p-values

Lowest p-value

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0131 0.0226 2.01 1.38
180 0.0131 0.0241 1.88 1.38
120 0.0123 0.0248 1.72 1.35

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0135 0.0229 2.04 1.36
180 0.0142 0.0243 2.03 1.34
120 0.0144 0.0250 2.00 1.36

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0121 0.0246 1.71 1.40
180 0.0123 0.0262 1.62 1.43
120 0.0120 0.0270 1.54 1.50

3 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0117 0.0232 1.75 2.15
180 0.0113 0.0244 1.60 2.18
120 0.0117 0.0257 1.57 2.30

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0120 0.0251 1.65 2.23
180 0.0122 0.0265 1.60 2.20
120 0.0125 0.0277 1.56 2.28

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0143 0.0259 1.91 2.18
180 0.0143 0.0266 1.86 2.17
120 0.0141 0.0273 1.79 2.25

5 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0106 0.0256 1.44 2.51
180 0.0108 0.0260 1.45 2.54
120 0.0108 0.0273 1.37 2.63

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0104 0.0271 1.33 2.48
180 0.0107 0.0286 1.29 2.50
120 0.0108 0.0301 1.25 2.60

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0117 0.0288 1.41 2.48
180 0.0110 0.0297 1.28 2.46
120 0.0112 0.0305 1.27 2.52

Notes: This table reports out-of-sample monthly mean returns and associated standard deviations,
annualized Sharpe ratios, and monthly average turnover of hedge portfolios going long-short
the 10% of stocks with the highest-lowest predicted returns, considering factors with the lowest
1, 3, and 5 associated p-values, setting shrinkage penalization parameter through FRC, fixing 5
regressors, for different combinations of RWshrk and RWpred.

obtained when using RWshrk = 240 with the three lowest p-values — despite
imposing a significant increase in average turnover.

A last notable observation is that the results appear to be relatively insen-
sitive to the choice of the rolling window parameters: the sparsity level imposed
by the researcher for factor selection seems to have greater importance. Overall,
our findings indicate that sparsity is crucial in the noisy environment of the factor
zoo.

3.3.4
Facing benchmarks

Upon cross-examining the results presented in Tables 3.3, 3.4, 3.5, and 3.6
alongside the new benchmark in Table 1.2, we observe (again) that surpassing
the proposed benchmark Sharpe ratio of 1.64 is no simple task. For instance, even
the best results obtained with the p-value threshold method (see Tables 3.3 and
3.5), respectively 1.49 (RWshrk = 120, RWpred = 240) and 1.44 (RWshrk = 240,
RWpred = 240), failed to outperform the Fama-French based predictions.

However, several hedge portfolios managed to outperform this stricter
benchmark. As shown in Table 3.7, all these portfolios were constructed under
the fixed number of relevant factors criterion, and two key insights can be drawn:
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1. Even if the most statistically significant factor has a p-value higher than 0.10,
using it provided better results than not designating any factor as relevant;

2. A higher sparsity level resulted in enhanced out-of-sample predictability.

Table 3.7: Outperforming hedge portfolios

Spanning Factor selection RWshrk RWpred Mean SD Sharpe Turnovercriterion criterion

FRC5 lwst1 180 240 0.0135 0.0229 2.04 1.36
FRC5 lwst1 180 180 0.0142 0.0243 2.03 1.34
FRC5 lwst1 120 240 0.0131 0.0226 2.01 1.38
FRC5 lwst1 180 120 0.0144 0.0250 2.00 1.36
BIC lwst1 120 240 0.0130 0.0231 1.95 1.40

FRC5 lwst3 240 240 0.0143 0.0259 1.91 2.18
BIC lwst1 120 180 0.0135 0.0247 1.89 1.41

FRC5 lwst1 120 180 0.0131 0.0241 1.88 1.38
FRC5 lwst3 240 180 0.0143 0.0266 1.86 2.17
BIC lwst3 240 180 0.0144 0.0271 1.85 2.17
BIC lwst3 240 240 0.0140 0.0265 1.83 2.17
BIC lwst3 240 120 0.0144 0.0277 1.80 2.27

FRC5 lwst3 240 120 0.0141 0.0273 1.79 2.25
BIC lwst1 180 240 0.0121 0.0235 1.79 1.38
BIC lwst1 180 180 0.0129 0.0252 1.78 1.36

FRC5 lwst3 120 240 0.0117 0.0232 1.75 2.15
BIC lwst1 180 120 0.0130 0.0258 1.74 1.37
BIC lwst1 120 120 0.0126 0.0254 1.72 1.39

FRC5 lwst1 120 120 0.0123 0.0248 1.72 1.35
FRC5 lwst1 240 240 0.0121 0.0246 1.71 1.40
BIC lwst3 120 240 0.0111 0.0231 1.67 2.15

FRC5 lwst3 180 240 0.0120 0.0251 1.65 2.23
BIC lwst3 180 120 0.0132 0.0279 1.64 2.12

Notes: This table reports the portfolios presented on Tables 3.3, 3.4, 3.5, and 3.6 that yielded better
annualized Sharpe ratios than the best-performing benchmark portfolio - presented on Table 1.2.

Our findings suggest that the dimensionality issue of the zoo of factors
can be satisfactorily addressed by estimating the statistical significance of factor-
spanning shrinkage regressions’ intercepts. Specifically, our results show that
when using monthly data in the framework proposed in Section 3.2, the most
relevant factors should be selected assuming significant pre-defined sparsity, i.e.,
classifying fewer than 3 factors as relevant.

More interestingly, although the best out-of-sample results are generally
obtained considering a combination of shorter factor selection and longer returns
prediction windows, i.e., RWshrk ∈ {120, 180} and RWpred ∈ {180, 240}, it was
possible to surpass the proposed benchmark with RWshrk = 240 or RWpred = 120.
This indicates that our findings are likely not very susceptible to data mining, as
there is no need for a specific combination of window sizes to obtain interesting
out-of-sample results.
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3.4
Final considerations

In this chapter, we assess the statistical significance of factor relevance by
analyzing the intercepts of spanning regressions, building upon the framework
developed in Chapter 1. Lower p-values for these intercepts indicate that certain
factor returns cannot be sufficiently explained by the returns of other factors,
suggesting unique information that others cannot replicate.

Furthermore, we keep underscoring the power of lower dimensional mod-
els’ silent sparsity assumption, introducing it within our framework through two
key steps: first, in the spanning regressions, and second, when assessing factor
relevance.

We recommend the FRC criterion (see Subsection 2.2.3) for setting the
penalization parameter in shrinkage regressions, dynamically adjusting it to
ensure the selection of a predefined number of jointly relevant factors. One more
time, this criterion proves advantageous when researchers possess prior beliefs
regarding the number of factors to be considered. Additionally, we recommend
enforcing a set sparsity level when selecting relevant factors, focusing on a
predetermined number of factors ranked by their intercept p-values, independent
of any specific statistical threshold. The outcomes presented in our study suggest
that this sparsity assumption holds merit in both instances.

We applied our methodology to a comprehensive set of 80 anomaly factors,
alongside the market factor, using the widely adopted LASSO technique for span-
ning regressions. We fixed the rolling window for multicollinearity treatment at
240 periods and considered candidate periods of 120, 180, and 240 months for
both factor selection and returns forecasting. Although results were less favorable
when only factors with p-values below 0.10 were considered, ranking factors by
statistical significance and setting a predefined number allowed us to surpass the
stricter benchmark across several parameter combinations.

Our results indicate that shorter windows for factor selection, combined
with longer windows for return prediction, tend to yield better outcomes. This
finding is grounded in the notion that the relevance of factors should closely cor-
respond to the present moment, while the estimation of the relationship between
selected factors’ returns and test assets’ returns benefits from a longer horizon.
Nevertheless, certain combinations with extended factor selection windows and
forecasting periods outperformed the proposed benchmark, indicating robust-
ness against potential data-mining concerns and supporting the credibility of our
findings.
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3.A
Appendix

3.A.1
Time variability of statistically significant factors

Figure 3.A.1: Factors with intercepts’ p-values bellow 0.10 - BIC penalty

Notes: The plot reports the number of factors with spanning regressions intercepts lower than 0.10
when setting the penalization parameter through BIC, for RWshrk ∈ [120, 180, 240].

Figure 3.A.2: Factors with intercepts’ p-values bellow 0.10 - FRC5 penalty

Notes: The plot reports the number of factors with spanning regressions intercepts lower than 0.10
when setting the penalization parameter through FRC5, for RWshrk ∈ [120, 180, 240].
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3.A.2
Elastic Net results

Table 3.A.1: Out-of-sample results - BIC penalty and p-values under 0.10

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0090 0.0205 1.52 1.35
180 0.0090 0.0225 1.39 1.37
120 0.0086 0.0240 1.24 1.40

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0099 0.0243 1.41 1.42
180 0.0104 0.0251 1.44 1.42
120 0.0108 0.0258 1.44 1.41

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0087 0.0245 1.23 1.36
180 0.0093 0.0252 1.28 1.35
120 0.0092 0.0260 1.22 1.34

Notes: This table reports out-of-sample monthly mean returns and associated standard deviations,
annualized Sharpe ratios, and monthly average turnover of hedge portfolios going long-short
the 10% of stocks with the highest-lowest predicted returns, considering factors with associated
p-values lower than 0.10, setting shrinkage penalization parameter through BIC, for different
combinations of RWshrk and RWpred.

Table 3.A.2: Out-of-sample results - BIC penalty and 1, 3, and 5 lowest p-values

Lowest p-value

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0139 0.0229 2.11 1.45
180 0.0141 0.0244 2.00 1.46
120 0.0134 0.0252 1.84 1.44

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0128 0.0234 1.90 1.37
180 0.0137 0.0250 1.89 1.34
120 0.0137 0.0258 1.84 1.35

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0117 0.0255 1.58 1.40
180 0.0120 0.0271 1.54 1.43
120 0.0118 0.0279 1.46 1.52

3 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0107 0.0255 1.46 2.19
180 0.0109 0.0263 1.43 2.20
120 0.0108 0.0274 1.37 2.29

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0124 0.0254 1.69 2.19
180 0.0125 0.0270 1.60 2.15
120 0.0126 0.0282 1.55 2.20

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0136 0.0264 1.78 2.15
180 0.0142 0.0269 1.83 2.15
120 0.0140 0.0274 1.77 2.25

5 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0107 0.0282 1.32 2.52
180 0.0108 0.0285 1.31 2.54
120 0.0108 0.0291 1.28 2.66

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0107 0.0279 1.32 2.49
180 0.0108 0.0288 1.30 2.46
120 0.0114 0.0298 1.32 2.56

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0111 0.0292 1.32 2.49
180 0.0110 0.0298 1.28 2.49
120 0.0111 0.0311 1.24 2.56

Notes: This table reports out-of-sample monthly mean returns and associated standard deviations,
annualized Sharpe ratios, and monthly average turnover of hedge portfolios going long-short the
10% of stocks with the highest-lowest predicted returns, considering factors with the lowest 1,
3, and 5 associated p-values, setting shrinkage penalization parameter through BIC, for different
combinations of RWshrk and RWpred.
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Table 3.A.3: Out-of-sample results - FRC, fixing 5 regressors, (f5) penalty and
p-values under 0.10

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0092 0.0216 1.48 1.49
180 0.0098 0.0233 1.46 1.48
120 0.0096 0.0242 1.37 1.53

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0076 0.0241 1.09 1.51
180 0.0077 0.0258 1.03 1.52
120 0.0082 0.0265 1.07 1.53

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0100 0.0247 1.41 1.29
180 0.0104 0.0255 1.41 1.31
120 0.0104 0.0263 1.38 1.31

Notes: This table reports out-of-sample monthly mean returns and associated standard deviations,
annualized Sharpe ratios, and monthly average turnover of hedge portfolios going long-short the
10% of stocks with the highest-lowest predicted returns, considering factors with associated p-
values lower than 0.10, setting shrinkage penalization parameter through FRC, fixing 5 regressors,
for different combinations of RWshrk and RWpred.

Table 3.A.4: Out-of-sample results - FRC, fixing 5 regressors, (f5) penalty and 1,
3, and 5 lowest p-values

Lowest p-value

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0129 0.0229 1.95 1.40
180 0.0131 0.0243 1.87 1.39
120 0.0124 0.0251 1.71 1.36

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0136 0.0242 1.86 1.32
180 0.0136 0.0238 1.97 1.37
120 0.0124 0.0278 1.58 1.42

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0118 0.0250 1.64 1.39
180 0.0122 0.0266 1.59 1.43
120 0.0118 0.0274 1.49 1.53

3 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0104 0.0246 1.47 2.16
180 0.0107 0.0260 1.42 2.19
120 0.0110 0.0269 1.42 2.28

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0118 0.0251 1.63 2.25
180 0.0117 0.0266 1.52 2.20
120 0.0116 0.0274 1.47 2.27

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0141 0.0259 1.88 2.16
180 0.0143 0.0267 1.85 2.18
120 0.0142 0.0275 1.79 2.25

5 lowest p-values

RWshrk 120

RWpred Mean SD Sharpe Turnover

240 0.0096 0.0255 1.30 2.52
180 0.0099 0.0258 1.33 2.54
120 0.0101 0.0268 1.31 2.65

RWshrk 180

RWpred Mean SD Sharpe Turnover

240 0.0116 0.0269 1.49 2.51
180 0.0120 0.0288 1.44 2.50
120 0.0121 0.0296 1.41 2.58

RWshrk 240

RWpred Mean SD Sharpe Turnover

240 0.0116 0.0273 1.47 2.48
180 0.0117 0.0280 1.44 2.50
120 0.0118 0.0289 1.42 2.58

Notes: This table reports out-of-sample monthly mean returns and associated standard deviations,
annualized Sharpe ratios, and monthly average turnover of hedge portfolios going long-short
the 10% of stocks with the highest-lowest predicted returns, considering factors with the lowest
1, 3, and 5 associated p-values, setting shrinkage penalization parameter through FRC, fixing 5
regressors, for different combinations of RWshrk and RWpred.



4
Which factors matter?

Abstract. The thesis’ final chapter provides a qualitative analysis of
the pricing factors deemed relevant by the methodologies developed
in previous chapters. It begins by identifying the ten most frequently
selected factors across key exercises, observing that while factor rel-
evance shows stability within each methodology at different sparsity
levels, significant variations emerge between methodologies. A further
analysis groups factors by their economic fundamentals, revealing that
profitability-related anomalies are prominent in both methodologies,
but with distinct emphases: investment anomalies dominate within
the SDF-error model, whereas trading frictions are emphasized in the
factor-spanning approach. The examination also shows a consistent fac-
tor selection pattern over time, suggesting that each methodology cap-
tures unique, stable dimensions of pricing relevance. The chapter con-
cludes with an insight into the complementary nature of these method-
ologies, proposing that their distinct but reliable factor selections in-
dicate each may capture a separate facet of the asset pricing problem,
which presents an opportunity for future research on the integration of
these approaches.

Keywords: qualitative factor analysis; time-varying asset pricing;
cross-method factor divergence; factors time-variability.
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4.1
Introduction

Up to this point, we have structured a comprehensive framework to navi-
gate the extensive landscape of pricing anomalies (see Chapter 1) and applied it
to two completely different methodologies for factor selection - see Chapters 2
and 3. Analyzing the returns of hedge portfolios across both methodologies, we
found each achieved impressive out-of-sample results, even surpassing the stricter
benchmarks proposed in Subsection 1.4.1.

Up to his point, we have mainly reported returns´ characteristics, evaluat-
ing factor selection strategies by primarily comparing their Sharpe ratios. How-
ever, understanding which factors/factor categories are responsible for generating
such impressive predictability is relevant - and one of the main advantages of us-
ing a methodology like the LASSO instead of Principal Components Regression
(PCR) is that unveiling factor relevance is straightforward.

This final essay is dedicated to shedding light on the factors that survived
the shrinking process of both previous chapters and looking for differences and
similarities between them. We start at the individual level (looking at the pricing
anomalies that were most set as relevant), then aggregate the factors in qualitative
families (verifying the relevance of distinct types of factors), and finally visualize
time-series plots of chosen factor categories (searching for cyclical patterns).

Contributions for the literature. As this essay focuses on comparing two
methodologies for shrinking the factor zoo, it is reasonable to state that the ma-
jor contributions were developed in Chapters 2 and 3 while applying the flexible
framework developed in Chapter 1. However, as we are not aware of other stud-
ies that qualitatively compare two high-dimensional factor models, other essays
could take advantage of our approach if in need of a comparison methodology.

Outline. This closing essay is organized into three more sections. Section 4.2
briefly exposes the comparison approaches and defines six categories for clas-
sifying the factors concerning their fundamentals. We present the factor hall of
fame in Section 4.3, reporting the most relevant factors - and factor categories -
for each applied methodology, before summarizing findings in Section 4.4.
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4.2
Methodology

To open the black box of factors identified in Chapters 2 and 3, we will
proceed to report which factors were most selected as relevant by the applied
methodologies. The analysis begins with an evaluation of the full cross-section
of data, reporting how many times each factor was found relevant by each
methodology (see Subsection 4.3.1), before introducing time awareness, as we
observe the persistence of factor importance and how factor selection changes
over time - see Subsection 4.3.3.

While unveiling which factors were used in our previous exercises, we will
maintain a direct parallel between Chapters 2 and 3 qualitative outcomes, exam-
ining if there are qualitative similarities between their selection - see Subsection
4.3.2. To further enrich the analysis, we will group the factors into qualitative
families based on their fundamentals. To do so, we begin defining six distinct
categories for factors, and grouping all of the 80 pricing anomalies exposed in
Subsection 1.2.1 into them.

4.2.1
Factor (zoo) categories

Zoos are diverse, displaying a huge variety of wildlife for those willing to
explore them. Now imagine all those vastly distinct animals are all in one vivar-
ium, without any kind of separation between them. It would be a pandemonium.
No habit would fit the needs of every single animal, behavioral conflicts between
species could arise, animals could be exposed to unfamiliar diseases, predators
would be side to side with their pray, and there would be noise everywhere

These are just some of the reasons zoos are organized into distinct habi-
tats, usually segmented: mammal, reptile, and nocturnal houses, bird aviaries,
insectaria, amphibian centers, aquariums, butterfly gardens, etc. Zoos are orga-
nized focusing on facilitating the visitor’s experience, mitigating possible sources
of confusion.

We will group the anomalies into families in order to comprehend what
kind of factor were considered relevant by our proposed methodologies. This
enables us to observe if there is a dominance of certain kinds of factors over
their counterparts, or if there is a time-variant variation of relevance distributed
between families.

We will follow the categories proposed at Hou et al. (2020) and group the
studied pricing factors into six categories respecting the theoretical reasoning
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behind their alleged effectiveness. Those categories are:

Momentum Momentum factors are based on the observation that stocks that
have performed well tend to continue doing so, while underperforming stocks
are likely to keep underperforming. This phenomenon can be attributed to a vari-
ety of behavioral and market mechanisms. For instance, investors may underreact
to news, leading to price adjustments that drag over time. Alternatively, herding
behavior, where investors follow the actions of others, can also drive momentum.

Since its first appearance at Jegadeesh & Titman (1993), empirical evidence
supporting momentum strategies has been strong, with numerous studies show-
ing that past winners tend to outperform past losers over short to medium-term
horizons. Despite its robustness, momentum can also be risky, as it is prone to
sharp reversals during market downturns or periods of high volatility.

Value-versus-growth The value versus growth dichotomy is one of the most
well-established concepts in financial markets. Value stocks are characterized by
low prices relative to their fundamental metrics, such as earnings, book value,
or cash flow - see Basu (1977), Rosenberg et al. (1985), and Ou & Penman (1989)
respectively. These stocks are often seen as undervalued by the market, providing
opportunities for higher returns as their prices adjust upward over time. In
contrast, growth stocks are priced high relative to their fundamentals, reflecting
expectations of strong future growth.

The value premium, i.e., the superior performance of value stocks compared
to growth stocks, has been documented extensively. Theories explaining this phe-
nomenon include the risk-based view, suggesting that value stocks are inherently
riskier and thus command higher returns, and the behavioral perspective, which
posits that investors systematically overpay for growth stocks due to overopti-
mism.

Investment Investment factors examine the relationship between a firm’s in-
vestment activities and its stock returns. Firms’ investment decisions, such as cap-
ital expenditures, asset growth, and changes in total assets,1 can provide insights
into their future performance. Generally, firms that invest heavily may exhibit
lower subsequent returns, a phenomenon known as the asset growth effect.

The rationale behind the investment effect lies in the efficient allocation of
capital. Firms that invest heavily might be chasing growth opportunities that do
not always yield the expected returns, leading to overinvestment. Conversely,
firms that are more conservative in their investment strategies might be more

1See Chen & Chen (2012) and Cooper et al. (2008) for examples.
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efficient in capital allocation, resulting in higher profitability and stock perfor-
mance. Investment-based anomalies are often analyzed within the broader con-
text of firm behavior and capital market dynamics.

Profitability Profitability factors focus on the relationship between a firm’s
earnings and its stock returns. Measures such as return on equity (ROE) (Hou
et al., 2015), gross profit margin (Novy-Marx, 2013), and operating profitability
Fama & French (2015) are used to gauge a firm’s efficiency in generating profits
from its operations. High profitability is generally associated with higher stock
returns, as profitable firms are better positioned to deliver strong performance
and shareholder value.

The quality dimension of investing, encompassing profitability, indicates
that high-quality firms with robust earnings can yield superior returns. This
approach contrasts with value investing, as it emphasizes financial health and
operational efficiency rather than just low prices.

Intangibles Intangible factors consider the role of non-physical and non-
financial assets in influencing stock prices. These include investments in research
and development (R&D), brand equity, patents, human capital, and size.2 Intan-
gible assets are often key drivers of innovation and competitive advantage, par-
ticularly in industries such as technology and pharmaceuticals.

The valuation of intangible assets poses a unique challenge because they
are not always reflected on the balance sheet or are easily quantifiable. However,
firms with substantial intangible assets often exhibit strong future growth poten-
tial, making them attractive investment targets. For example, high R&D spending
can signal a commitment to innovation, which may translate into higher future
earnings and stock performance. Intangible factors highlight the importance of
looking beyond traditional financial metrics to capture the full value of a firm’s
assets.

Trading frictions Trading frictions encompass various impediments to market
liquidity and efficiency. Bid-ask spreads, trading volume, transaction costs, and
market microstructure issues represent some of the factors in this group - see
(Amihud & Mendelson, 1989), Chordia et al. (2001), and Amihud (2002) for
practical examples.

Understanding trading frictions is crucial for investors, as these factors
can significantly impact the execution of investment strategies and the realized
returns. For instance, small-cap stocks often exhibit higher trading frictions due

2See Banz (1981), Asness et al. (2000), and Belo et al. (2014) for some examples.
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to lower liquidity, possibly leading to higher volatility and transaction costs. On
the other hand, investors may charge a premium to bear risks associated with
frictions, and bearing them may turn out to be profitable.

Table 4.1: Anomaly factors - Category classification

Abbreviation Description Category Abbreviation Description Category

absacc Absolute accruals Investment mom1m 1-month momentum Momentum
acc Working capital accruals Investment mom36m 36-13 months momentum Momentum

aeavol Abnormal earnings Momentum mom6m 6-1 months momentum Momentumannouncement volume
agr Asset growth Investment ms Financial statement score Profitability
baspread Bid-ask spread Trading Friction mve Size Intangibles
beta Beta Trading Friction mve_ia Industry adjusted size Intangibles
betasq Beta squared Trading Friction nincr Number of earnings increases Profitability
bm Book-to-market Value-versus-growth operprof Operating profitability Profitability

bm_ia Industry adjusted Value-versus-growth pchcapx_ia Industry adjusted % change Investmentbook-to-market in capital expenditures
cash Cash holding Value-versus-growth pchcurrat % change in current ratio Value-versus-growth
cashdebt Cash flow to debt Value-versus-growth pchdepr % change in depreciation Investment

cashpr Cash productivity Profitability pchgm_pchsale % change in gross margin Profitability- % change in sales
cfp Cash flow to price ratio Value-versus-growth pchquick % change in quick ratio Value-versus-growth

cfp_ia Industry adjusted cfp Value-versus-growth pchsale_pchinvt % change in sale Profitability- % change in inventory

chatoia Industry adjusted change Profitability pchsale_pchrect % change in sale Profitabilityin asset turnover - % change in A/R

chcsho Change in share outstanding Investment pchsale_pchxsga % change in sale Profitability- % change in SG&A

chempia Industry adjusted Intangibles pchsaleinv % change in sales-to-inventory Profitabilitychange in employees
chinv Change in inventory Investment pctacc Percent accruals Investment
chmom Change in 6-month momentum Momentum pricedelay Price delay Trading Friction

chpmia Industry adjusted Profitability ps Financial statement score Profitabilitychange in profit margin
chtx Change in tax expense Profitability quick Quick ratio Value-versus-growth
cinvest Corporate investment Investment retvol Return volatility Trading Friction
currat Current ratio Value-versus-growth roaq Return on assets Profitability
depr Depreciation Investment roavol Earning volatility Profitability
dolvol Dollar trading volume Trading Friction roeq Return on equity Profitability
dy Dividend-to-price Value-versus-growth roic Return on invested capital Profitability
ear Earnings announcement return Momentum rsup Revenue surprise Profitability

egr Growth in common Investment salecash Sales to cash Profitabilityshareholder equity
ep Earnings-to-price Value-versus-growth saleinv Sales to inventory Profitability
gma Gross profitability Profitability salerec Sales to receivables Profitability
grcapx Growth in capital expenditure Investment sgr Sales growth Value-versus-growth

grltnoa Growth in long term Investment sp Sales-to-price Value-versus-growthnet operating assets

hire Employee growth rate Intangibles std_dolvol Volatility of liquidity Trading Friction(dollar trading volume)

idiovol Idiosyncratic return volatility Trading Friction std_turn Volatility of liquidity Trading Friction(share turnover)
ill Illiquidity Trading Friction stdacc Accrual volatility Investment

invest Capital expenditure Investment stdcf Cash flow volatility Value-versus-growthand inventory
lev Leverage Value-versus-growth tang Debt capacity/firm tangibility Profitability
lgr Growth in long term debt Investment tb Tax income to book income Intangibles
maxret Max daily return Trading Friction turn Share turnover Trading Friction
mom12m 12-1 months momentum Momentum zerotrade Zero trading days Trading Friction

Notes: This table lists all used factors. The abbreviation is consistent with Green et al. (2017) and
Sun (2024), while categories are in line with Hou et al. (2020).

Table 4.1 brings the anomaly factors from Table 1.1 classified by their cate-
gories. It is worth noting that the distribution of factors across categories is un-
even, with profitability accounting for 23 of the 80 available factors - about 29% of
the pool - while intangibles are represented by only 5 characteristics (around 6%
of our sample). Value-versus-growth, investment, trading friction, and momen-
tum are represented by 16, 16, 13, and 7 pricing factors respectively.
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4.3
Factor hall of fame

This section highlights key qualitative aspects of the most relevant factors
from the previous chapters and examines the proposed methodologies in parallel.

We begin in Subsection 4.3.1 by presenting the top 10 most frequent fac-
tors, followed by an exploration of factor categories in Subsection 4.3.2, where
we compile each family’s relative importance in each methodology. Finally, Sub-
section 4.3.3 analyzes the time persistence of relevant factor categories.

4.3.1
Most selected factors

Table 4.2 summarizes factors selected using the shrinkage model from
Chapter 2, stating how often the pricing anomalies were included in the set of
relevant factors.

Table 4.2: Most relevant factors - SDF-error model

BIC FRC1 FRC3 FRC5 FRC10

pchcapx_ia (inv) - 54.75% grltnoa (inv) - 25.10% mve (int) - 32.32% mve (int) - 46.77% ear (mom) - 66.16%
grltnoa (inv) - 50.19% pchcapx_ia (inv) - 19.39% pchcapx_ia (inv) - 30.04% chpmia (prof) - 41.06% chpmia (prof) - 65.78%
chempia (int) - 43.73% acc (inv) - 13.31% grltnoa (inv) - 28.52% cfp (value) - 41.06% pchcurrat (value) - 59.32%
mve (int) - 42.59% mve (int) - 6.84% lgr (inv) - 23.57% pchcapx_ia (inv) - 34.98% cfp (value) - 56.65%
chpmia (prof) - 42.59% pchgm_pchsale (prof) - 5.70% pchsale_pchrect (prof) - 21.29% pchsale_pchrect (prof) - 33.84% mve (int) - 56.65%
ear (mom) - 42.59% lgr (inv) - 4.94% acc (inv) - 20.15% pchcurrat (value) - 31.56% pchgm_pchsale (prof) - 55.89%
pchgm_pchsale (prof) - 41.83% pchcurrat (value) - 4.56% pchcurrat (value) - 18.63% grltnoa (inv) - 28.52% pchsale_pchrect (prof) - 45.63%
pchcurrat (value) - 41.83% mom12m (mom) - 4.56% chpmia (prof) - 16.73% pchgm_pchsale (prof) - 28.52% pricedelay (trad) - 45.63%
chatoia (prof) - 39.16% mom36m (mom) - 3.42% cfp (value) - 14.07% lgr (inv) - 23.19% chempia (int) - 43.73%
cinvest (inv) - 38.78% rsup (prof) - 2.66% egr (inv) - 11.79% acc (inv) - 21.29% mom1m (mom) - 39.92%

Notes: This table lists the top 10 factors for each exercise presented in Chapter 2, alongside
their qualitative group and the percentage of periods where they were considered relevant. The
abbreviation is consistent with Green et al. (2017) and Sun (2024), while categories are in line with
Hou et al. (2020).

We must recall that setting up the LASSO’s penalization parameter through
BIC does not limit the total number of relevant factors - where it’s easily verified
that just the top two most frequently selected factors together exceed 100% - and
that BIC did not yield the most prominent results, indicating that more weight
should be given to the results from the sparser FRC models.

It is interesting that, when the penalty parameter is set to guarantee only one
relevant factor (FRC1), all top 3 factors are investment-related - growth in long-term
net operating assets (grltnoa), industry adjusted % change in capital expendi-
tures (pchcapx_ia) and working capital accruals (acc). In more intermediate spar-
sity levels the size (mve) factor dominates, while the previous most important
factors, despite appearing more times, lose relative importance. Finally, earnings
announcement return (ear) stands out in FRC10: a factor that did not appear in
the top 10 most selected factors for any of the more sparse FRC penalties.



Chapter 4. Which factors matter? 73

Allowing for more factors to be set as relevant generally jeopardized out-of-
sample returns - especially when we incorporate as many as 10 factors into the
model (see Subsection 2.3.3). Examining the used factors, it is possible to infer
that using less relevant factors may have forced the model to focus on stronger,
more tactical, signals, that are not relevant all the time: only three of the top 10
factors for the FRC1 hold relevant at the FRC10’s top 10, and none of the top 3
FRC1 factors remained at the top 10 for the FRC10.

As shown in Table 4.3, Chapter 3 methodology produced a completely
distinct set of relevant pricing anomalies, resulting in a clear most relevant factor.

Table 4.3: Most relevant factors - factor spanning methodology (FRC5)

p-val0.10 lwst1 lwst3 lwst5

dolvol (trad) - 30.80% dolvol (trad) - 33.46% dolvol (trad) - 45.63% dolvol (trad) - 49.81%
bm (value) - 17.87% bm (value) - 16.73% roic (prof) - 30.04% mve (int) - 38.40%
roic (prof) - 12.17% mve (int) - 8.37% mve (int) - 26.62% roic (prof) - 36.50%
mve (int) - 11.41% operprof (prof) - 7.98% bm (value) - 24.71% ms (prof) - 30.80%
ms (prof) - 7.98% gma (prof) - 5.32% ms (prof) - 23.57% bm (value) - 30.42%
gma (prof) - 5.70% depr (inv) - 4.94% operprof (prof) - 17.49% pricedelay (trad) - 24.71%
depr (inv) - 5.32% ms (prof) - 3.42% cinvest (inv) - 11.79% operprof (prof) - 23.19%
operprof (prof) - 4.18% cinvest (inv) - 3.42% cashpr (prof) - 10.65% cinvest (inv) - 19.39%
cashpr (prof) - 3.80% roic (prof) - 3.04% pricedelay (trad) - 8.75% cashpr (prof) - 18.63%
pricedelay (trad) - 3.42% acc (inv) - 2.66% depr (inv) - 8.37% chatoia (prof) - 17.11%

Notes: This table lists the top 10 factors for each FRC5 exercise presented in Chapter 3, alongside
their qualitative group and the percentage of periods where they were considered relevant. The
abbreviation is consistent with Green et al. (2017) and Sun (2024), while categories are in line with
Hou et al. (2020).

Dollar trading volume (dolvol), a relatively simple liquidity proxy, was
consistently the most relevant pricing factor for all the exercises proposed in
Chapter 3 - even when setting up the penalty parameter through BIC.3. It is also
interesting to highlight that the other two anomalies, book-to-market (bm) and
size (mve), were among the top 5 most relevant ones for all exercises.

Moreover, three more factors were in the top 10 in all exercises, return on
invested capital (roic), financial statement score (ms), and operating profitability
(operprof), while corporate investment (cinvest) was in the top 10 whenever we
set a pre-defined number of relevant factor. Table 4.3 paints the factor spanning
regressions of Chapter 3 as a stable methodology for factor selection, as the
selected anomalies do not vary abruptly with desired sparsity levels.

The difference in relevant factors’ stability observed between the proposed
methodologies could originate from the approach used to achieve sparsity. In
Chapter 3, selected factors sparsity is mainly ensured by the intercepts’ p-values,
as we order them and choose the n lowest ones, while in Chapter 2 the sparsity is
directly guaranteed by the shrinkage’s penalty parameter. Changes in the penalty

3See Appendix 4.A.1.
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parameter can modify the region for the optimal combination of β′s, incurring
more drastic variations of non-zero coefficients.

A direct comparison of Tables 4.2 and 4.3 also evidences that the de facto used
factor differs immensely between methodologies. Subsection 4.3.2 will further
investigate those differences, focusing on the type of relevant factors, but it should
now be crystal clear that there the proposed methodologies capture distinct
phenomena.

4.3.2
Most relevant factor category

The individual factor significance analysis introduced, despite being rele-
vant, must be extended for a clearer understating of the most important factors,
especially as some practitioners will find of the utmost importance the compre-
hension of the type of factor that is mostly relevant. Tables 4.4 and 4.5 bring the
relative importance4 of each factor category, defined at Subsection 4.2.1.

Table 4.4: Most relevant factor categories - SDF-error model

Group BIC FRC1 FRC3 FRC5 FRC10 Average
Investments 23.9% 65.4% 40.2% 26.3% 16.3% 34.4%
Profitability 28.0% 14.4% 22.3% 26.5% 27.6% 23.8%
Value-versus-growth 17.4% 4.9% 13.4% 20.6% 24.2% 16.1%
Intangibles 7.6% 6.8% 13.3% 13.2% 10.2% 10.2%
Momentum 10.6% 8.4% 10.5% 11.8% 15.5% 11.3%
Trading frictions 11.2% 0.0% 0.3% 1.7% 6.2% 3.9%
Market 1.3% 0.0% 0.0% 0.0% 0.0% 0.3%

Notes: This table quantifies the relative importance of each qualitative category of factors for each
exercise presented in Chapter 2.

The SDF error-based regression of Chapter 2 yielded a set of factors highly
concentrated in investments anomalies, especially when imposing higher degrees
of sparsity: more than 65% of the relevant factors for the FRC1 regressions were
from the investments category - see Table 4.4. As the imposed sparsity levels
get less strict, the distribution of categories’ relevance gets less concentrated,
and investment-related anomalies lose some of their relative importance: for the
FRC10 penalty, the most relevant categories are profitability (27.6%) and value-
versus-growth (24.6%), only then followed by investments - at 16.3%.

The average relevance concentration between factor categories for the
methodology from Chapter 3 (Table 4.5) shows a similar concentration pattern
across factor categories as Chapter 2’s. However, profitability becomes the most
represented category, particularly in lower-sparsity models. Another enormous

4Notice that the numbers of each column will sum 100%, and represent the percentage of
relevant factors for a given exercise that was classified as being of that category.
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Table 4.5: Most relevant factor categories - factor spanning methodology (FRC5)

Group p-val0.10 lwst1 lwst3 lwst5 Average
Profitability 32.8% 24.3% 40.4% 39.8% 34.4%
Trading frictions 30.7% 35.7% 20.8% 18.0% 26.3%
Value-versus-growth 19.5% 20.2% 16.6% 18.3% 18.6%
Investments 6.5% 11.4% 10.8% 11.6% 10.1%
Intangibles 9.6% 8.4% 10.5% 10.6% 9.8%
Market 0.3% 0.0% 0.5% 1.3% 0.5%
Momentum 0.6% 0.0% 0.4% 0.5% 0.4%

Notes: This table quantifies the relative importance of each qualitative category of factors for each
FRC5 exercise presented in Chapter 3.

difference is the relevance attributed to trading friction factors, which skyrock-
eted from 3.9% to 26.3% of average presence, topping a whopping 35.7% presence
when only the factor with the lowest p-value is considered.

On the other hand, the momentum category lost almost all of its relevance
observed in the first model, plummeting from 11.3% average relative importance
to an almost negligible 0.4%. Finally, the market value had an underwhelming
appearance in both methodologies, with less than 1% average relevance, and
value-versus-growth and intangible factors displayed stable relevance in both
Chapters’ factor selection approaches, of about 17% and 10%, respectively.

It is noteworthy to add that, as stated in Subsection 4.2.1, the distribution of
the anomalies present in our database is not even between categories: profitability
was as much as 23 factors, while value-versus-growth, investments, trading
friction, momentum, and intangibles have 16, 16, 13, 7, and 5 factors, respectively.
Results from Chapter 2, where investment factors were chosen frequently as
relevant, represent a significant overweight on the category. Chapter 3 results
also state a deviation from the equal-weight selection of factors, but less extreme
- as investment factors already account for about 29% of the available pricing
anomalies.

4.3.3
Timing of factor category relevance

The previous Subsections 4.3.1 and 4.3.2 set the foundations for comparing
the type of factor set as relevant for each one of the exercises we have done. Now
we will introduce a time-varying aspect to the analysis, as we aim to understand
how the relevance of different pricing factor categories varies over time.

We explore how the category of used pricing factors vary with the time in
Figures 4.1 and 4.2, where the relative factor relevance (same data from Tables
4.4 and 4.5 is plotted is respect to its time-series component, building upon the
mean analysis presented on Subsection 4.3.2. Especial effort should be expended
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to examine potential cyclicality of relevant factors’ categories, as those plots could
unveil some macroeconomic/financial cycle-dependent patterns to be further
explored.

Figure 4.1: Relevant factor categories over time - SDF-error model

Notes: This figure illustrates the time-series behavior of selected factors’ categories for each
exercise presented in Chapter 2.

We begin with relevant factors from Chapter 2 - see Figure 4.1. Set aside
the first plot, where BIC is used to set the penalty parameter for the LASSO
regression,5 factor selection is notably stable. Most of the time, when a category

5As argued in Subsection 2.2.2, asset pricing is a extremely noisy environment, and usual



Chapter 4. Which factors matter? 77

is set relevant in a period, it will stay relevant at the following selection, and the
relevant categories remain unchanged for almost all the observed time.

Figure 4.2: Relevant factor categories over time - factor spanning methodology
(FRC5)

Notes: This figure illustrates the time-series behavior of selected factors’ categories for each FRC5
exercise presented in Chapter 3.

Advancing to results from Chapter 3, Figure 4.2 exhibits similar levels of
relevant factors’ categories stability, as relevant families seem to stay relevant
throughout all the sample, with no major fluctuations on their representatives
- especially when we focus on exercises that select factors with the lowest 3 and 5
p-values. If we focus on the most significant factor, we have a distinct category that
is more relevant for each third of the time series: at the beginning the profitability
family is dominant, in the second third the trading friction category appears more

Bayesian criterion may have trouble finding a minimum value when searching for the penalty
parameter, resulting in some abrupt jumps for the used λ, leading to huge variations in the
number of factors that survive the shrinkage process.



Chapter 4. Which factors matter? 78

relevant, while on the final third value-versus-growth group takes over as the
prevalent one.

The visualizations also highlight the distinctiveness of relevant categories
across the proposed methodologies: Figure 4.1 illustrate grayer plots, represent-
ing a greater relevance of investment-related factors, while Figure 4.2 is brighter
due to a dominance of the yellow and green colors that represent profitability
and trading frictions anomalies. Those aspects were already enlightened in Sub-
section 4.3.2, but it is still interesting to visualize the phenomena.

Finally, possible macroeconomic cycle-dependent aspects of factors used
in our exercises do not find support in either Figure 4.1 or 4.2, as there are
any signs of cyclicality. Overall, the plots support the conclusion that relevant
factor categories are stable across time for both methodologies, with no evident
cyclicality: despite clearly selecting qualitative distinct pricing anomalies.

4.4
Final considerations

In this chapter, we qualitatively examined the pricing factors identified as
relevant by the methodologies in Chapters 2 and 3.

We began by listing the top 10 most frequently selected factors for each of
the nine main exercises in this dissertation, finding that while factor stability gen-
erally holds within each methodology across sparsity levels, it can shift signifi-
cantly between methodologies.

Then we categorized factors according to their fundamentals. Profitability-
related anomalies emerged as relevant in both methodologies, though they were
surpassed by investment factors in the SDF-error model and closely followed by
trading frictions in the factor-spanning approach. The differences in the types of
pricing anomalies selected by each approach are notable, suggesting that each
methodology captures a unique aspect of the asset pricing problem.

Finally, in observing the time variability of the selected factor types, we
found considerable stability over the test period. This suggests that each pro-
posed methodology yields a distinct yet persistently stable set of factor selections.

The existence of two distinct factor selection methodologies, both devel-
oped from the same dataset and yielding relevant out-of-sample results yet
with markedly different qualitative aspects, is intriguing. We believe that each
methodology may be capturing a unique aspect of price action, suggesting po-
tential complementarity. Exploring this complementarity could be an interesting
direction for future research.
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4.A
Appendix

4.A.1
Most selected factors - Spanning regressions with BIC penalty

Table 4.A.1: Most relevant factors - factor spanning methodology (BIC)

p-val0.10 lwst1 lwst3 lwst5

dolvol (trad) - 27.38% dolvol (trad) - 33.08% dolvol (trad) - 45.25% dolvol (trad) - 49.43%
ms (prof) - 16.73% bm (value) - 12.17% ms (prof) - 34.22% ms (prof) - 44.49%
bm (value) - 12.93% ms (prof) - 9.13% roic (prof) - 31.56% roic (prof) - 40.30%
roic (prof) - 9.89% mve (int) - 7.22% mve (int) - 23.19% mve (int) - 33.84%
mve (int) - 9.13% depr (inv) - 7.22% bm (value) - 15.97% pricedelay (trad) - 28.90%
depr (inv) - 8.75% roic (prof) - 5.70% depr (inv) - 12.93% chatoia (prof) - 20.15%
gma (prof) - 5.32% cinvest (inv) - 4.94% pricedelay (trad) - 12.55% bm (value) - 18.63%
cinvest (inv) - 1.90% operprof (prof) - 3.04% cinvest (inv) - 11.79% cinvest (inv) - 17.49%
pricedelay (trad) - 1.90% gma (prof) - 3.04% cashpr (prof) - 10.65% cashpr (prof) - 17.49%
currat (value) - 1.52% chatoia (prof) - 2.66% chatoia (prof) - 10.27% pchcurrat (value) - 15.97%

Notes: This table lists the top 10 factors for each BIC exercise presented in Chapter 3, alongside
their qualitative group and the percentage of periods where they were considered relevant. The
abbreviation is consistent with Green et al. (2017) and Sun (2024), while categories are in line with
Hou et al. (2020).

4.A.2
Most relevant factor category - Spanning regressions with BIC penalty

Table 4.A.2: Most relevant factor categories - factor spanning methodology (BIC)

Group p-val0.10 lwst1 lwst3 lwst5 Average
Profitability 36.5% 27.8% 41.8% 40.3% 36.6%
Trading frictions 28.8% 35.0% 20.5% 17.6% 25.5%
Value-vesrus-growth 15.4% 15.6% 15.5% 16.4% 15.7%
Investments 9.8% 13.3% 11.3% 12.1% 11.6%
Intangibles 8.4% 7.2% 9.5% 11.2% 9.1%
Market 0.7% 0.8% 1.0% 1.5% 1.0%
Momentum 0.4% 0.4% 0.4% 0.9% 0.5%

Notes: This table quantifies the relative importance of each qualitative category of factors for each
BIC exercise presented in Chapter 3.
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4.A.3
Timing of factor category relevance - Spanning regressions with BIC penalty

Figure 4.A.1: Relevant factor categories over time - factor spanning methodology
(BIC)

Notes: This figure illustrates the time-series behavior of selected factors’ categories for each BIC
exercise presented in Chapter 3.



Conclusion

This dissertation addresses the curse of dimensionality within the extensive
zoo of factors in asset pricing, aiming to enhance factor selection methodologies
in high-dimensional contexts. We begin by establishing a time-varying frame-
work that minimizes potential biases and propose two distinct methodologies to
manage factor dimensionality: (i) an approach leveraging the Stochastic Discount
Factor (SDF) model error, and (ii) a method utilizing p-value calculations for in-
tercepts in factor return spanning regressions.

The findings underscore the benefits of differentiating time series lengths
for separate analytic purposes and imposing elevated sparsity levels in high-
dimensional factor selection models, which yield comparable efficacy to classi-
cal, low-dimensional models. Our results reveal that while both methodologies
produce out-of-sample Sharpe ratios of similar magnitudes, they diverge signif-
icantly in the types of factors deemed relevant, highlighting the methodological
nuances in factor selection.

These findings collectively emphasize the critical role of carefully structured
methodologies, indicating that even straightforward shrinkage regressions, when
employed within a rigorously designed framework, can yield portfolios with
substantial out-of-sample returns

Future research could extend these findings along several promising av-
enues. Our time-varying framework for factor selection accommodates the po-
tential integration of more sophisticated shrinkage techniques, and further ex-
ploration in this direction is highly encouraged. It should also be interesting to
replicate the proposed methodology to data sets that capture other periodicities
- especially intraday data. Lastly, replicating the procedures for other economies
could strengthen our findings, as, for the moment, we only have results for the
United States equity market.
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