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Abstract

De Paoli Cardoso de Castro, Leonardo; Medeiros, Marcelo. Fore-
casting Industrial Production in Brazil using many Pre-
dictors. Rio de Janeiro, 2016. 43p. MsC Thesis – Department of
Economia, Pontifícia Universidade Católica do Rio de Janeiro.

In this article we compared the forecasting accuracy of unrestricted and
penalized regressions using many predictors for the Brazilian industrial
production index. We focused on the least absolute shrinkage and selection
operator (Lasso) and its extensions. We also proposed a combination
between penalized regressions and a variable search algorithm (PVSA).
Factor-based models were used as our benchmark specification. Our study
produced three main findings. First, Lasso-based models over-performed the
benchmark in short-term forecasts. Second, the PSVA over-performed the
proposed benchmark, regardless of the horizon. Finally, the best predictive
variables are consistently chosen by all methods considered. As expected,
these variables are closely related to Brazilian industrial activity. Examples
include vehicle production and cardboard production.

Keywords
Industrial production;. Forecasting;. LASSO;. Shrinkage;. Model

selection;. Leading indicators.



Resumo

De Paoli Cardoso de Castro, Leonardo; Medeiros, Marcelo. Fore-
casting Industrial Production in Brazil using many Pre-
dictors. Rio de Janeiro, 2016. 43p. Dissertação de Mestrado – De-
partamento de Economia, Pontifícia Universidade Católica do Rio
de Janeiro.

Nesse artigo, utilizamos o índice de produção industrial brasileira para com-
parar a capacidade preditiva de regressões irrestritas e regressões sujeitas a
penalidades usando muitos preditores. Focamos no least absolute shrinkage
and selection operator (LASSO) e suas extensões. Propomos também uma
combinação entre métodos de encolhimento e um algorítmo de seleção de
variáveis (PVSA). A performance desses métodos foi comparada com a de
um modelo de fatores. Nosso estudo apresenta três principais resultados. Em
primeiro lugar, os modelos baseados no LASSO apresentaram performance
superior a do modelo usado como benchmark em projeções de curto prazo.
Segundo, o PSVA teve desempenho superior ao benchmark independente
do horizonte de projeção. Finalmente, as variáveis com a maior capacidade
preditiva foram consistentemente selecionadas pelos métodos considerados.
Como esperado, essas variáveis são intimamente relacionadas à atividade in-
dustrial brasileira. Exemplos incluem a produção de veículos e a expedição
de papelão.

Palavras-chave
Produção industrial;. Projeções;. LASSO;. Encolhimento;. Se-

leção de modelos;. Indicadores antecedentes.
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1
Introduction

After GDP, the industrial production index (IPI) is the most important
business cycle indicator for a given country. One of the main advantages of
using the IPI in comparison to GDP is that the latter is usually disclosed in a
quarterly manner while the former is released on a monthly basis. This gives
us reliable high-frequency updates on the economic situation and helps market
agents to assess current and future developments. Thus, it’s safe to say that
the IPI is a reliable indicator of the overall level of economic activity. In Brazil,
the industrial sector accounts for over 17 percent of the economy’s total GDP.
Therefore, accurately forecasting short-term activity is essential for aiding the
decision-making processes not only of industry-related companies but also of
central bankers and other policy makers.

In this work, we addressed different methods for predicting both short-
and long-term developments of the Brazilian industrial production index in a
data-rich environment. While an extensive literature has focused on forecasting
activity in real time for developed countries, few studies have been done for
the Brazilian economy. Stock and Watson (2002) used factor-based models
to forecast different real variables in the United States, including industrial
production, over both short- and long-term horizons. Their results showed that
high-dimensional forecasting methods over-performed simpler linear models in
most cases. Bulligan, Golinelli and Parigi (2010) compared different forecasting
methods for the Italian IPI series and found that factor models over-performed
standard ARIMA regressions. Acedanski (2013) applied a similar methodology
to the Polish industrial production index and concluded, contrary to Bulligan,
Golinelli and Parigi’s (2010) result, that simpler models often over-performed
factor models. Lupi and Bruno (2001) used VAR models to forecast Italian
industrial production and concluded that current leading indicators provide
good predictive ability for not only short-but also long-term horizons. Apart
from pursuing the best forecasting method, these authors also demonstrated
the benefits of model combination following Stock and Watson (2006). Finally,
Cunha (2010) used a diffusion index to anticipate future movements of the
slack in Brazilian industrial production. His results show that factor models
based solely on financial variables over-perform more complex models. This
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result goes accords with those found by Hollauer, Issler and Notini (2008) and
contradicts common wisdom, which states that hard-data variables are those
most likely to present higher predictive power. Our main objective in this paper
is to forecast Brazilian IPI’s monthly growth by considering a large number of
potential variables, using both soft and hard data.

Forecasting economic activity is not an easy task, especially when work-
ing with a large number of potential predictors. Since most candidates are mere
approximations of reality, the uncertainty over the correct choice of regressors
grows with the number of available candidates. Model specification is therefore
an issue that is not readily resolved.

Standard variable selection algorithms usually rely on some type of
information criteria, such as the Bayesian Information Criterion (BIC), a
sequential testing procedure, such as forward stepwise selection, or some sort
of model selection algorithm. The main problem with these approaches is
that their ability to provide reliable forecasts is limited to small datasets.
There are two reasons for this: first, the number of available models grows
exponentially with the number of candidate variables, making these methods
computationally costly or even unfeasible to evaluate all possible combinations;
second, when the number of covariates is larger than the number of available
observations (k > T ), models become under-identified, making ordinary least
squares estimation impossible. Thus, estimating high-dimensional models using
standard procedures does not seem to be a good choice.

Empirical evidence helps us by providing priors on which leading eco-
nomic indicators are most likely to anticipate the movements of other variables.
In this work, our prior is that a small number of variables are relevant in de-
termining future developments of the Brazilian Industrial Production Index
(PIM). This implies the use of a sparse (small number of relevant variables)
rather than dense (many relevant variables) dataset. The statistical method
used in each of these two representations varies. Standard estimation methods
for dense matrices are Principal Component Analysis (PCA), Dynamic Fac-
tor Analysis (DFA) and other variations. These methods capture the common
variance between the explanatory variables and narrow these variables to a
small number of factors. Despite providing good predictive results, they pro-
vide no information on which variables best describe the model and are also
subject to bad quality data. Sparse matrix estimation, by contrast, is generally
achieved using penalized regressions. The introduction of a penalty parameter
into standard linear regressions helps to diminish model complexity by forcing
the coefficients of irrelevant variables toward zero. The Ridge Regression pro-
posed by Hoerl and Kennard (1970) and the Elastic Net regression proposed
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by Zou and Hastie (2005) are examples of penalized least squares.
Statistical data on the Brazilian economy have only recently begun to

be gathered. Therefore, forecasting the country’s economic variables can be
problematic since we face a “fat” shaped dataset (many variables but not as
many observations, k > T ). Model selection in this type of dataset is subject
to various issues, e.g., over-fitting and constant revisions. Our main goal in this
paper is to forecast the Brazilian industrial production index by considering
a large number of potential explanatory variables. We use three different
approaches to cope with this problem. First, we use factor-based models as our
benchmark. Second, we use shrinkage regressions (or penalized regressions),
using the Lasso (Least Absolute Shrinkage and Selection Operator) proposed
by Tibshirani (1994) and the Adalasso (Adaptive Least Absolute Shrinkage
and Selection Operator) proposed by Zou (2006). Shrinkage regressions are
designed to select the most parsimonious model while preserving the true
representation of data generating process of the response variable. Third,
we combine penalized regressions with a variable selection algorithm that
we will henceforth refer to as PVSA (Penalized Variable Search Algorithm).
This methodology reduces the number of potential explanatory variables using
shrinkage regressions and then uses a variable search algorithm to select the
model with the best out-of-sample performance. Finally, we also assess the
predictive ability of the simple mean of all forecasts produced by the PSVA.
We will henceforth refer to this forecast combination as POOL.

Our results demonstrate that shrinkage regressions over-perform our
benchmark in short-term forecasts. The combination of penalized regressions
with a variable selection model (PVSA) over-performed the Lasso, the Adalasso
and the proposed benchmark at all forecasting horizons. Furthermore, pool-
ing forecasts using the Lasso as a first-step variable filter (POOL) achieved
the best forecasting accuracy in our exercise. Diebold-Mariano tests of sta-
tistical equivalence corroborate this outcome. Moreover, the shrinkage models
predictive ability and variable selection consistency worsened as we increased
the number of candidates, revealing a methodological limitation. The results
also show that long-term forecasts exhibit inferior performance compared with
shorter horizons and are often beaten by the response variable’s historical
mean. A possible explanation for this result is that the available leading indi-
cators seem to contain little information about long-run investment decisions
and, consequently, future production.

Finally, although our main objective is to select the most accurate
model independent of the forecasting horizon, all methods yielded similar sets
of candidate variables. As we would expect, those most frequently selected
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were related to economic activity and production. Individually, explanatory
variables related to the auto industry were by far the most common in our
analysis, suggesting that Brazilian industrial production is highly dependent
on this segment. Another interesting result is that business sentiment surveys
also exhibited high predictive power and were frequently selected in both short-
and long-term forecasts. This corroborates the results observed in Hollauer,
Issler and Notini (2008) and Mello, E. (2014) that show that the industry’s
capacity utilization index and business sentiment surveys significantly enhance
forecasting power.

This paper is organized as follows. Section 2 introduces the penalized
regression framework, focusing on the Lasso and its variants. Section 2 also
presents the PSVA. In Section 3, we briefly discuss the Brazilian IPI and the
candidate variables available in our dataset. In Section 4, we present our main
results, and we conclude our analysis in Section 5.



2
Shrinkage regressions and the Lasso

Approximating complex inter-correlations between real-world variables
using small, semi-structural models is a difficult task. For instance, an econ-
omy’s transmission mechanisms are determined by a huge number of different
variables - which may or may not be directly related to the economy itself.
Given the underlying uncertainty, accurate variable selection plays a substan-
tial role in the pursuit of a single model that can simplify reality using a small
number of candidates. Sequential testing procedures such as forward stepwise
selection and complete subset regression analysis (Elliot, Gargano and Tim-
mermann, 2012) achieve good results when working with small datasets by
providing a parsimonious model with good predictive performance. However,
these methods become inefficient and, eventually, unfeasible when using a large
number of predictors, as when the number of covariates exceeds the number
of observations (k > T ), models become under-identified. Penalized regres-
sions such as the Lasso are a fast and reliable alternative for high-dimensional
estimation and forecasting.

In this chapter, we introduce the penalized regression framework. We
also present a variant of penalized regression called the PSVA (Penalized
Variable Selection Algorithm), which combines shrinkage methods and a
variable selection algorithm.

2.1
Penalized Regressions

Shrinkage regressions such as the Lasso can be viewed as a penalized
functional form of standard ordinary least squares estimation. There are two
main objectives motivating the introduction of tuning parameters into OLS
regressions: (i) reducing model complexity by shrinking the estimates of the
regression coefficients toward zero relative to their OLS estimates and (ii)
improving accuracy by trading bias to reduce estimator variance. By producing
some coefficients that are exactly zero, the Lasso provides interpretable models
and is therefore an efficient alternative when working with high-dimensional
datasets. The Lasso estimator is defined as follows:
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b̂ = arg min
b̂

||Y −Xb||22 + λ
P∑
p=1
|bp|, (2-1)

where b is the N × 1 vector of parameters, Y = (y1, ..., yt)′ is the
response variable, X is the P × n data matrix, and λ is a non-negative
regularization parameter. In penalized regressions, model complexity becomes
a function of its regularization parameter (λ). As the tuning parameter
increases in size, penalties become more conservative and reduce the model
specification by shrinking irrelevant variables coefficients toward zero (λ =∞
makes all coefficients equal to zero). Figure 2 illustrates this relationship by
showing the sensitivity between the Lasso’s penalization parameter (x axis)
and the candidate regressors coefficients (y axis). Most studies select the
tuning parameter using cross-validation1 or some information criteria such
as the Bayesian Information Criterion (BIC). The former is not always the
best choice since it is not robust to inter-temporal dependence. In other
words, cross-validation does not provide the expected results when the data
are not independent and identically distributed (i.i.d.). Thus, regularization
parameters selected through information criteria appear to work best for time-
series datasets.

Although capable of efficiently handling large datasets, the Lasso also
faces limitations. Zou (2006) and Meinshausen and Bühlmann (2006) showed
that there are scenarios in which the model selection determined by the Lasso
is inconsistent and does not achieve the oracle property (Fan and Li, 2001).
In other words, the Lasso is not always capable of selecting the correct set of
relevant variables, and even if it is, the Lasso estimator will most likely present
a different asymptotic distribution than that provided by the OLS estimator
(oracle). Zou (2006) suggested a two-step procedure called the adaptive Lasso
(Adalasso), whereby individual weights are used to further constrain variable
coefficients in the l1 penalty. This modification allows the Adalasso to achieve
variable selection consistency. Moreover, Medeiros and Mendes (2015) derived
conditions under which the Adalasso presents both model selection consistency
and enjoys the oracle property. The Adalasso estimator is defined as follows:

β̂ = arg min
β̂

||Y −Xβ||22 + λ
P∑
p=1
wp|βp|, (2-2)

where β is the N × 1 vector of parameters, λ is the first-step Lasso
regularization parameter, w is a weight vector defined as wp = |β̂Lasso|

−γ, with
1A technique used to assess the predictive accuracy of a particular model.
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βLasso as a first-step Lasso estimator to β, and γ is a non-negative weighting
parameter (γ > 0).

The main challenge in applying this approach is to correctly tune the
adaptive Lasso or, in other words, to retrieve the optimal pair of parameters
(γ, λ) that will yield the model with the closest representation to the true
data generation process. Both parameters are often selected through the
minimization of some sort of loss function, e.g., root mean squared error or
mean absolute error, using cross-validation methodology. As mentioned above,
this method does not perform well in frameworks with serially correlated data.
To address this issue, practitioners have resorted to the use of out-of-sample
evaluation or information criterion, such as the BIC. Zhang et al (2010),
Wang et al (2007) and Zou et al (2007) showed that the BIC is a reliable
alternative to cross-validation in time-series frameworks. Finally, Medeiros
and Mendes (2015) used the BIC as the selection method for both the first-
step Lasso regularization parameter (λ) and the Adalasso weighting parameter
(γ). They showed that this flexible version of the Adalasso is asymptotically
consistent and enjoys the oracle property (selects the correct variable subset)
even when the number of candidate variables is much larger than the number
of observations.

In addition to the Lasso, there are also other types of penalized regres-
sions that are worth highlighting. The Lasso is a particular case in which a
standard ordinary least squares estimator is constrained by a linear absolute
value penalty term. Other shrinkage methods such as the Ridge Regression
and the Elastic Net also use quadratic penalties. Let us consider a generic loss
function (l) that contains both linear (l1) and quadratic penalties (l2). The
latter can be defined as follows:

l1,2 = λ
P∑
p=1

[(1− α)|bp|+ α|bp|2], (2-3)

where λ is a positive regularization parameter, bp represents the pth

independent variable coefficient, and α represents the share of each penalty
(l1 or l2) in the minimization procedure. The Lasso is a particular case in
which α = 0. As α increases toward unity, the quadratic penalty gains
importance and may not necessarily shrink irrelevant variables to zero but,
instead, to a very small value. In contrast to the Lasso, the Ridge Regression
(the particular case in which α = 1) does not produce a parsimonious model,
as it always retains all the predictors in the model. When α is in between these
particular cases, the following regression is known as the Elastic Net (Zou and
Hastie, 2005), which uses a combination of both linear (l1) and quadratic (l2)
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penalties. By combining the effects of both the Lasso and the Ridge Regression,
the Elastic Net produces a sparse model with good predictive accuracy while
encouraging a grouping effect (it selects highly correlated regressors).

2.2
Penalized Variable Selection Algorithm (PSVA)

Testing all possible variable combinations in high-dimensional datasets is
a costly and sometimes unfeasible task. We propose a variation of the Complete
Subset Regression method proposed by Elliot, Gargano and Timmermann
(2013) by combining shrinkage regressions and a variable selection algorithm.
We also propose a set of constraints that reduce the required computational
effort and makes variable selection more efficient.

The methodology applied consists of two main parts. First, we reduce the
number of available candidates to a few targeted predictors2 by applying the
Lasso as a first-step variable filter. Since our procedure involves re-estimating
the model for each out-of-sample prediction (in our work, we consider a 36-
step forecast sample), the Lasso may ultimately select heterogeneous models.
The variables selected through the procedure compose a new set of candidates
that is used in the second part of our proposed algorithm. By employing a
lower-dimension dataset we are able to address conventional model selection
methods such as sequential testing procedures and information criterion.

The second part of the algorithm uses a slightly different approach from
ordinary variable selection methods by imposing two additional constraints.
The first further reduces the set of candidates selected by the Lasso by imposing
a cap (k) on the number of variables available to our algorithm. Second,
instead of estimating all available variable combinations (2k), we also limit
the maximum number of variables that can be included in each model (p).
Both modifications make our algorithm more efficient by eliminating from the
analysis variables that may have been incorrectly selected by the Lasso and
precluding model over fitting. Our results consider k = 20 and p = 6.

The top-k most selected variables are considered the most likely to best
represent the response variable’s data generating process and are therefore
included as candidates by our algorithm. If a number of variables greater than k
present the same (and highest) selection rate, all will be assigned as candidates.
For example, assume that k=10 and that the Lasso selected 12 of the total
available variables in its estimation procedure with the same selection rate.
In this case, k will be reset to 12, thus considering all selected variables as
possible candidates.

2See Bai & Ng (2008) for more on targeted predictors.
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Having selected n≤k variables, we estimate every possible variable com-
bination that respects the p-maximum variable constraint using ordinary least
squares. The total number of different model specifications is then given by
the following equation:

tot =
p∑
i=1

n!
(n− i)!i! , (2-4)

where n is the number of available candidates, and i is the number of
variables combined in each individual model.

Finally, each individual model produces one-step-ahead forecasts within a
moving window of j periods. This procedure is repeated Z times, and in each
iteration, the moving window shifts backward by one period. To illustrate,
suppose that in the first iteration, models are tested for their performance in
the window between t1,1 = v and t2,1 = v+ z. The best model in this iteration,
denoted m1, will be the model with the best out-of-sample RMSE error within
this window. Then, in the second iteration, the moving window would shift
backward by one. As a result, models would be tested for their out-of-sample
RMSE performance in the window between t1,2 = v − 1 and t2,2 = v + z − 1.
We would then have another model, denoted m2, which performed the best
in this second window. Notably, m1 and m2 may or may not be the same.
After z iterations, we would have Z best models, each of which had the top
performance in its respective moving window. These models are then used to
produce the “true performance” of our proposed algorithm. Considering the
example above, m1 would give us the forecast for period v + z + 1, while m2

would produce the forecast for period v + z. The idea is to always predict
using the model that had the best out-of-sample performance up to the last
observation of a given moving window. Within each moving window, we also
consider not only individual models but also model averages, such that m1

forecasts may be an average over the tot models rather than one single model.



3
Data and Period of Analysis

The PIM is Brazil’s monthly industrial production index (IPI) and
represents the product of both manufacturing and extractive industries. The
index is calculated by the Brazilian Institute of Geography and Statistics
(IBGE) and was first compiled in the 1970s. In May 2014, the IPI received
its second methodological revision, updating the industries’ activities and
their index weights to the latest classification of the National Classification
of Economic Activities (CNAE 2.0). Despite having changed its methodology
in 2014, the IBGE updated the IPI in January 2012 and linked it to its previous
version, creating a series that begins in 2002.

Since the available data were subject to a methodological revision, it is
very unlikely that the IPI’s data generating process has remained the same
over time. Therefore, the choice of which sample to use in our analysis was not
trivial. We had three possible options:

(1) Use only the new version (with the methodological update) of the IPI,
running from January 2012 until September 2016. This would give us a
sample with 48 observations.

(2) Use the old version (without the methodological update) of the IPI,
running from January 2002 until September 2016. This would give us a
sample with 120 observations.

(3) Test whether the coefficients suffered significant changes after the
methodological update. If the test result were negative, we could esti-
mate our models using the entire available sample, running from January
2002 until September 2016. This would give us 177 observations.

As estimating models with a small number of observations and a large
number of candidates is a problem that lacks a simple solution, we chose
the option that provided us with the largest sample available (option 3). To
assess whether there was a significant change between periods, we estimated
a regression with seasonal dummies and an additional control variable that
represented the updated series period1. The results indicated that we could not

1A dummy equal to 0 from January 2002 to December 2011 and equal to 1 from January
2012 to September 2016.
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significantly reject that the two periods presented the same seasonal effects. In
light of this result, option 3 seemed to be the best choice for our analysis.

There is an additional consideration that needs to be made: our main
objective is to perform real-time forecasts of the IPI’s monthly growth. This
means attempting to replicate the exact conditions (with the same information
set) faced by forecasters or, in other words, considering only the preliminary
nature of the data and discarding possible revisions. Therefore, our response
variable was constructed by linking the non-revised realizations of the IPI’s
monthly growth from January 2002 until our last available observation in
September 2016. Figure 3.1 compares the original (non-revised) and the revised
industrial production index using January 2002 as our initial point2. Figure
3.2 shows the relative frequency of revisions made to the IPI over the years.

Following the methodology applied to construct our real-time IPI series,
we selected over 70 candidate variables, of which we also include two lags. The
lagged response variable is also included as a candidate variable in our dataset.
All variables were tested for the presence of a unit root and transformed
(first differentiated) when necessary. To account for the seasonality of the
series, monthly dummies were also included as candidate regressors. The
explanatory variables are both soft and hard data and are detailed in Appendix
B. Our dataset contains variables that cover the manufacturing of intermediary,
durable and non-durable goods, government debt, taxes, foreign trade, wages,
unemployment, confidence indexes, sales, leverage, interest rates, etc. All
candidate variables possess the same time span as the IPI (January 2002 to
September 2016).

Our sources are Bloomberg, the Brazilian Institute of Geography and
Statistics (IBGE), the Getúlio Vargas Foundation (FGV), the National Trea-
sury department, the Brazilian Central Bank, the Ministry of Development,
Industry and Foreign Trade, the Ministry of Labor, and the Industry Federa-
tion of the state of São Paulo (FIESP).

2January 2002 = 100.
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Figure 3.1: IPI - Original and Revised Series. January 2002 = 100

Figure 3.2: IPI’s Revisions Relative Frequency



4
Main Results

This section presents the performance of three forecasting methods used
to predict the monthly growth of the Brazilian industrial production index
(IPI) ( PIMt

PIMt−1
−1). The first method is based on principal components analysis

(PCA). The second method selects models through penalized regressions
(shrinkage) using the Lasso and the Adalasso. The third and final method
combines penalized regressions and a variable selection algorithm (PSVA).
Finally, we also assess the predictive ability of the simple mean of all forecasts
produced by the PSVA. We will henceforth refer to this forecast combination
as POOL.

Our dataset is composed of over 70 candidates with 177 monthly obser-
vations each, dated from January 2012 to September 2016. We use up to two
lags of the response and candidate variables as possible predictors. To account
for the series seasonality, monthly dummies were also considered as candidates.
All variables were tested for the presence of a unit root and transformed (first
differentiated) when necessary. The models were estimated using a 36-month
rolling window, and their forecasts accuracy were compared using the root
mean squared error (RMSE) and the mean absolute error (MAE). All esti-
mated models and predictive results are for up to 12-month-ahead horizons.
The estimated equation is defined as follows:

Yt+h = α0 +
2∑
i=0
δ′Xt−i +

∑
s

θsDs + µt+h, (4-1)

where Yt+h is the Brazilian industrial production index monthly growth,
α0 is a constant term, Xt−i is the vector containing the candidate variables and
their lags, Ds is a vector containing monthly seasonal dummies, and µt is an
error term. This equation states that the IPI is highly dependent on calendar
effects and past realizations of both the response variable and other leading
indicators.

The first interesting result is that while the IPI’s monthly growth was
highly dependent on calendar effects, its past realizations lacked predictive
power relative to the remaining predictors in our dataset. The seasonal
component, by contrast, was very important for predicting movements in the
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responses variable. Figure 3 shows that the series monthly results behave in a
similar way over time. Moreover, when tested formally, the results indicated
that the IPI exhibits strong seasonality. Figure 4 shows how the seasonal factors
are spread across the year. This result led us to include monthly dummies as
candidate regressors to address this seasonal behavior. Note that imposing
dummies as candidates while using shrinkage methods can be problematic.
For instance, it is unlikely that they will always be selected by the algorithm
since other variables can capture part of the seasonality, thus causing the
dummies to be regarded as irrelevant. Nevertheless, results have shown that
both the Lasso and the Adalasso recurrently considered the seasonal dummies
as relevant regressors.

By providing good forecasting results in the presence of a very large
number of variables, penalized regressions out-perform factor-based models
when exposed to a large number of irrelevant variables. For comparison
purposes, we tested the Lasso, Adalasso and the PSVA using three different
datasets:

(1) Dataset composed of the most relevant variables selected following our
own prior. Total of 68 candidates.

(2) Dataset 1 plus 38 candidates (includes lagged variables). Total of 106
candidates.

(3) Dataset 1 plus 78 candidates (includes lagged variables). Total of 146
candidates.

The result of this exercise was that both the Lasso and the Adalasso be-
came more conservative as we included a larger number of irrelevant variables
as potential candidates. This becomes more clear in longer-term forecasts, in
which only a small number of variables are considered relevant. By becoming
more conservative, the forecasting performance at any given horizon deterio-
rated as the size of the dataset increased. Appendix B presents the variables
used in each of the three previously mentioned groups. Figure 5 compares the
methods one-step-ahead forecasting performance using each dataset. Figures
6, 7 and 8 depict the average number of selected variables at each forecasting
horizon using the Lasso and the Adalasso, each with a different set of variables.

Using dataset number 2 as the available group of variables, the proposed
methods achieved strong results in short-term forecasting, which is the most
relevant horizon for econometric models. This outcome highlights the potential
benefits of shrinkage regressions in data-rich environments. When compared to
the one-step ahead forecasts disclosed by other market participants, the PSVA



Chapter 4. Main Results 23

and POOL were included among the top-10 best-performing predictors. This
is another strong result, especially as market participants are able to introduce
priors into their forecasts to cope with movements that are not captured by
the available regressors. Figure 9 shows the top-ranked market participants
forecasting performance and the ranking of the Lasso, the Adalasso, the
PVSA and the POOL model. Furthermore, another interesting result was that
the POOL’s forecasting performance improved as the number of irrelevant
variables grew. This leads us to two conclusions: first, shrinkage regressions
were unable to efficiently discard all irrelevant variables; second, variables that
were presumed to be orthogonal to the IPI captured part of the movement
that other candidates were not able to capture.

The results also indicate that long-term forecasts exhibit considerably
worse performance than those at shorter horizons and are often out-performed
by the response variable’s historical mean. A possible explanation for this result
is that the available leading indicators seem to contain little information about
long-run investment decisions and, consequently, future production. Figures
10 and 11 show the root mean squared error (RMSE) and the mean squared
(MAE) at different forecasting horizons using the Lasso, the Adalasso, the
PSVA, the POOL and a model using principal components (our benchmark).

It’s worth noting that all of the proposed methods were efficient in choos-
ing variables consistent with economic theory, regardless of forecasting horizon.
Examples of recurrently selected variables in long-term forecasts were lagged
interest rates and spread rates. A possible transmission mechanism regarding
these variables is that long-term investments are negatively influenced by a cost
effect, i.e., higher interest rates. At short-term horizons, the best-performing
models regularly selected variables related to vehicle production, highway traf-
fic, cardboard sales and working days. This result suggests that Brazilian in-
dustrial production is highly dependent on the country’s auto industry.

To assess the statistical relevance of the various forecasts generated by the
proposed methods, we used the Diebold-Mariano test for predictive equality.
All forecasts were compared against our benchmark. These tests revealed
that one-step-ahead predictions were statistically superior to the proposed
benchmark’s performance. Tests of the longer-term forecasts (h > 1), by
contrast, did not reject the null hypothesis of statistical equality. This result
persisted even after adjusting the DM test to improve small-sample properties,
as proposed by Harvey, Leybourne, and Newbold (1997). Table 2 illustrates
this analysis by presenting the adjusted DM test’s p-values for 1- to 12-month-
ahead forecasts.
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Table 4.1: Adjusted Diebold-Mariano One-sided Tests: P-values (x 100)
Forecasting Horizon Lasso Adalasso PSVA Pool

t = 1 4.08 8.85 0.44 0.47

t = 2 16.21 16.28 3.06 5.02

t = 3 16.41 16.26 4.78 5.61

t = 4 17.20 17.78 7.23 6.92

t = 5 19.04 19.03 0.61 1.00

t = 6 20.60 19.71 2.46 3.75

t = 7 15.60 9.18 0.17 0.07

t = 8 23.19 23.08 9.83 9.93

t = 9 23.40 23.20 2.11 5.94

t = 10 28.31 23.73 7.68 8.26

t = 11 19.98 19.63 6.79 6.79

t = 12 20.79 23.18 8.29 12.89



5
Conclusion

Forecasting economic variables in rich, high-dimensional environments
is a difficult task. In this paper, we address this issue and compare different
forecasting methods when applied to Brazilian data, specifically the industrial
production index (IPI). Since standard linear models tend to become ineffi-
cient as our dataset enlarges, we utilized shrinkage methods to address the
dimensionality problem. Here, we consider the Lasso and the Adalasso. We
also propose a combination of penalized regressions and a variable search al-
gorithm, which we refer to as PVSA. Finally, we also assess the predictive
ability of the simple mean of all forecasts produced by the PSVA, which we
call POOL. The forecasts produced by these previously mentioned methods
were compared to a principal component model, our benchmark.

The results demonstrated that shrinkage methods over-performed the
proposed benchmark in short-term forecasts, regardless of the number of
available candidates. Furthermore, the PSVA and the POOL excelled the
greater part of market participants predictions. This is a strong result given
that individuals are able to introduce their priors to cope with movements that
are not captured by the available regressors. Long-run forecasts, by contrast,
exhibit considerably worse performance and often under-perform the response
variable’s historical mean.

Finally, all methods considered selected similar sets of explanatory vari-
ables. Short-term predictions were usually dominated by the auto industry
related variables, highway traffic, cardboard sales, business days, and so forth.
Long-term forecasting, by contrast, exhibited greater variability and selected
variables such as interest rates, spread rates, confidence indexes and so forth.
Moreover, the shrinkage models’ predictive ability and variable selection con-
sistency worsened as we increased the number of candidates, revealing a clear
limitation of the minimization algorithm. The merger between penalized re-
gressions and a deterministic variable selection algorithm addressed this prob-
lem by consistently selecting the same variable subset regardless of the number
of available regressors. The short-term forecast results suggest that Brazil’s in-
dustrial production is highly dependent on the country’s auto industry and
other related sectors. Medium-term determinants, by contrast, were unclear,
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suggesting both methodological and data limitations.



Bibliography

[1] ACEDÁNSKI, J.. Forecasting industrial production in poland – a
comparison of different methods. Ekonometria Econometrics, 39:40–
51, 2013.

[2] ARTHUR E. HOERL, R. W. K.. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[3] BAI, J.; NG, S.. Forecasting economic time series using targeted
predictors. Journal of Econometrics, 146(2):304–317, October 2008.

[4] BATES, M. J.; GRANGER, J. C. W.. The combination of forecasts.
Journal of the Operational Research Society, 20(4):451–468, 1969.

[5] BRUNO, G.; LUPI, C.. Forecasting euro-area industrial production
using (mostly) business surveys data. ISAE Working Papers 33, ISTAT
- Italian National Institute of Statistics - (Rome, ITALY), 2003.

[6] BULLIGAN, G.; GOLINELLI, R. ; PARIGI, G.. Forecasting monthly
industrial production in real-time: from single equations to
factor-based models. Empirical Economics, 39(2):303–336, 2010.

[7] CUNHA, F. C. S.. Previsão da Produção Industrial do Brasil: Uma
Aplicação do Modelo de Índice de Difusão Linear. Dissertação
de mestrado, Departamento de Engenharia Elétrica da PUC-Rio, Pontifícia
Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

[8] DE MELLO, E. P. G.; FIGUEIREDO, F. M. R.. Assessing the Short-term
Forecasting Power of Confidence Indices. Working Papers Series 371,
Central Bank of Brazil, Research Department, Dec. 2014.

[9] ELLIOTT, G.; GARGANO, A. ; TIMMERMANN, A.. Complete subset
regressions. Journal of Econometrics, 177(2):357–373, 2013.

[10] FAN, J.; R., L.. Variable selection via nonconcave penalized like-
lihood and its oracle properties. Journal of the American Statistical
Association, 96:1348–1360, 2001.



Bibliography 28

[11] FRANCIS X. DIEBOLD, R. S. M.. Comparing predictive accuracy.
Journal of Business & Economic Statistics, 13(3):253–263, 1995.

[12] HARVEY, D.; LEYBOURNE, S. ; NEWBOLD, P.. Testing the equality of
prediction mean squared errors. International Journal of Forecasting,
13(2):281–291, 1997.

[13] HOLLAUER, G.; ISSLER, J. A. V. ; NOTINI, H. H.. Prevendo o cresci-
mento da produção industrial usando um número limitado de
combinações de previsões. Economia Aplicada, 12:177 – 198, 2008.

[14] MEDEIROS, M. C.; MENDES, E. F.. l1-Regularization of High-
Dimensional Time-Series Models with Flexible Innovations. Jour-
nal of Econometrics, 191:255 – 271, 2016.

[15] MEINSHAUSEN, N.; BÜHLMANN, P.. High dimensional graphs
and variable selection with the lasso. ANNALS OF STATISTICS,
34(3):1436–1462, 2006.

[16] STOCK, J. H.; WATSON, M.. Forecasting with many predictors.
volumen 1, chapter 10, p. 515–554. Elsevier, 1 edition, 2006.

[17] STOCK, J.; WATSON, M.. Macroeconomic forecasting using diffu-
sion indexes. Journal of Business and Economic Statistics, 20(2):147–162,
2002.

[18] TIBSHIRANI, R.. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288, 1994.

[19] WANG, H.; LI, G. ; TSAI, C.-L.. Regression coefficient and autore-
gressive order shrinkage and selection via the lasso. Journal of the
Royal Statistical Society Series B, 69(1):63–78, 2007.

[20] ZHANG, Y.; LI, R. ; TSAI, C.-L.. Regularization parameter selections
via generalized information criterion. Journal of the American
Statistical Association, 105(489):312–323, 2010.

[21] ZOU, H.. The adaptive lasso and its oracle properties. Journal of
the American Statistical Association, 101(476):1418–1429, 2006.

[22] ZOU, H.; HASTIE, T.. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society, Series B, 67:301–320,
2005.



Bibliography 29

[23] ZOU, H.; HASTIE, T. ; TIBSHIRANI, R.. On the “degrees of freedom”
of the lasso. Ann. Statist., 35(5):2173–2192, 10 2007.



A
Estimation Procedures

The estimation procedure of the Lasso and its extensions was imple-
mented using the GLMNET package contained in the R software repository.
The default procedure used to select the penalization parameter (λ1) is cross-
validation. Results have shown that this procedure may produce misleading
results in serially correlated datasets. To address this issue, we followed the
methodology used by Medeiros and Mendes (2015). First, we estimated the reg-
ularization path using the Lasso. We then split this path into 100 consecutive
parts, ranging from λ = 0.1 (low penalization) to λ = 1 (high penalization).
For each λ we had a different set of variables and therefore a different set of
in-sample estimates for our response variable. The optimal tuning parameter
used in our work was selected according to the Bayesian information crite-
rion (BIC). Figures A.1 and A.2 below report the number of selected variables
using cross-validation and BIC, respectively, for each estimated part of the
regularization path (each λ).

Recall that the Adalasso can be determined by the following equation:

β̂ = arg min
β̂

||Y −Xβ||22 + λ
P∑
p=1
wp|βp|, (A-1)

where β is the N x 1 vector of parameters, λ is the first-step Lasso
regularization parameter, w is a weight vector defined as wp = |β̂Lasso|−γ ,
with b∗p as a first-step Lasso estimator for β, and γ is a non-negative weighting
parameter (γ > 0).

The parameters estimated using the Lasso were used as first-step es-
timates for the Adalasso’s weighting vector (w). We also set its weighting
parameter γ at 1.
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Figure A.1: LASSO’s Tuning Parameter Selection via Cross-Validation

Figure A.2: LASSO’s Tuning Parameter Selection via BIC



B
Data

From table B.1 to table B.14 we listed the name of each candidate
variable, its label (the name used for each respective variable in our database),
its source, and in which group it belongs (marked with an X). The sources
listed below are further described in table B.15.

B.1
Candidate Variables

Table B.1: Industrial Sector (Excluding FIESP’s Industrial Production Index)
Variable Label Source Group 1 Group 2 Group 3

Cardboard Expedition ABPO BBG X X X

Heavy Vehicles Traffic ABCR BBG X X X

Energy Consumption ONS BBG X X X

Vehicle Production Estoques_anfavea BBG X X X

Vehicle Stocks Anf_totalsemrevisao BBG X X X
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Table B.2: FIESP Industrial Production Index
Variable Label Source Group 1 Group 2 Group 3

Industrial Index - Com-
posite

INA_semrevisao FIESP X X X

Mineral Industry INA_minerais FIESP X X X

Beverage Industry INA_bebidas FIESP X X X

Machinery Industry INA_maquinas FIESP X X X

Textile Industry INA_texteis FIESP - X X

Cellulose Industry INA_celulose FIESP - X X

Print Industry INA_maquinas FIESP - X X

Derivatives Industry INA_derivados FIESP - X X

Chemical Industry INA_quimicos FIESP - X X

Pharmaceutical Industry INA_farmaceuticos FIESP - X X

Derivatives Industry INA_derivados FIESP - X X

Rubber Industry INA_borracha FIESP - X X

Metallurgical Industry INA_metalurgia FIESP X X X

Metal products Industry INA_produtosmetal FIESP X X X

“Other” Industry INA_outros FIESP - X X

Other Products Industry INA_outrosprod FIESP - X X

Furniture Industry INA_moveis FIESP - X X

Auto Industry INA_veiculos FIESP X X X

Food Industry INA_alimentos FIESP - X X

Table B.3: Retail
Variable Label Source Group 1 Group 2 Group 3

Consumption Survey -
Composite

SERASA SERASA - X X

Consumption Survey -
Home appliances

SERASA_eletro SERASA - X X

Consumption Survey -
Clothing

SERASA_vest SERASA - X X

ANFAVEA - Auto sale ANFAVEA_vendas ANFAVEA - X X

Credit Card Sales Cielo Cielo - X X
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Table B.4: Surveys: Current Conditions
Variable Label Source Group 1 Group 2 Group 3

Manufacturing Industry Prod_ISA FGV X X X

Consumption Goods benscon_ISA FGV - - X

Durable Goods bensd_ISA FGV - - X

Non-Durable Goods bensnd_ISA FGV - - X

Intermediary Goods bensint_ISA FGV - - X

Capital Goods bensk_ISA FGV - - X

Table B.5: Surveys: Expectations
Variable Label Source Group 1 Group 2 Group 3

Manufacturing Industry Prod_IE FGV X X X

Consumption Goods benscon_IE FGV - - X

Durable Goods bensd_IE FGV - - X

Non-Durable Goods bensnd_IE FGV - - X

Intermediary Goods bensint_IE FGV - - X

Capital Goods bensk_IE FGV - - X

Table B.6: Surveys: Composite
Variable Label Source Group 1 Group 2 Group 3

Manufacturing Industry Prod_ICI FGV X X X

Consumption Goods benscon_ICI FGV - - X

Durable Goods bensd_ICI FGV - - X

Non-Durable Goods bensnd_ICI FGV - - X

Intermediary Goods bensint_ICI FGV - - X

Capital Goods bensk_ICI FGV - - X
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Table B.7: Other Surveys
Variable Label Source Group 1 Group 2 Group 3

Manufacturing Industry -
Total Demand

ind_FGV_trfo_DT FGV X X X

Manufacturing Industry -
Capacity Utilization In-
dex

ind_FGV_trfo_UCI FGV - - X

Manufacturing Industry -
Expected Level of Produc-
tion

ind_FGV_trfo_PP FGV - - X

Manufacturing Industry -
Expected Level of De-
mand

ind_FGV_trfo_DTPFGV - - X

Manufacturing Industry -
External Demand

ind_FGV_trfo_DE FGV - - X

Table B.8: Foreign Trade
Variable Label Source Group 1 Group 2 Group 3

Total Exports Funcex_Xtotal FUNCEX X X X

Manufacturing Exports Funcex_XManu FUNCEX X X X

Total Imports Funcex_MTotal FUNCEX X X X

Industrial Imports Funcex_II FUNCEX X X X

Imported Capital Goods
parts

Funcex_peças FUNCEX X X X

Imported Vehicle equip-
ment

Funcex_transp FUNCEX X X X

Imported Capital Goods Funcex_bensk FUNCEX X X X
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Table B.9: Credit
Variable Label Source Group 1 Group 2 Group 3

Concessions - Composite BCB_conc BCB - X X

Concessions - Corporate BCB_conPJ BCB - X X

Concessions - Non-
Corporate

BCB_conPF BCB - X X

Interest Rate - Composite BCB_juros BCB X X X

Interest Rate - Corporate BCB_jurosPJ BCB X X X

Interest Rate - Non-
Corporate

BCB_jurosPF BCB X X X

Spread Rate - Composite BCB_spread BCB - X X

Spread Rate - Corporate BCB_spreadPJ BCB - X X

Spread Rate - Non-
Corporate

BCB_spreadPF BCB - X X

Table B.10: Fiscal
Variable Label Source Group 1 Group 2 Group 3

Total Tax Collections fiscal_arrecadacao NTD X X X

Industrial Production Tax
Collections

fiscal_IPI NTD X X X

Imports Tax Collections fiscal_II NTD X X X



Appendix B. Data 37

Table B.11: Other Variables
Variable Label Source Group 1 Group 2 Group 3

Working Days DU MDIC X X X

B.2
Sources

Table B.12: Candidate Variable Sources

Source Label Description

ABRAS Brazilian Supermarket Association

BBG Bloomberg

BCB The Brazilian Central Bank

CIELO Cielo Enterprise

FGV Getúlio Vargas Foundation

FIESP Industry Federation of the state of São Paulo

FUNCEX Foreign Trade Studies Foundation

MDIC The Ministry of Development, Industry and Foreign
Trade and the Ministry of Labour

NTD The National Treasury Department

SERASA Serasa Experian Enterprise



C
Figures

Figure C.1: The PIM and the Industrial GDP annual growth
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Figure C.2: LASSO Regularization Path

Figure C.3: The PIM’s Average Seasonality
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Figure C.4: The PIM’s Seasonal Factors

Figure C.5: One-step ahead Forecasting Performance
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Figure C.6: Average Number of Selected Variables - Group 1

Figure C.7: Average Number of Selected Variables - Group 2
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Figure C.8: Average Number of Selected Variables - Group 3

Figure C.9: Relative Performance to BBG Median Forecast RMSE
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Figure C.10: Root Mean Squared Error

Figure C.11: Mean Absolute Error
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