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Abstract

This paper proposes a generalization of the class of realized semivariance and semico-

variance measures introduced by Barndorff-Nielsen, Kinnebrock and Shephard (2010) and

Bollerslev, Li, Patton and Quaedvlieg (2020a) to allow for a finer decomposition of realized

(co)variances. The new “realized partial (co)variances” allow for multiple thresholds with

various locations, rather than the single fixed threshold of zero used in semi (co)variances.

We adopt methods from machine learning to choose the thresholds to maximize the out-of-

sample forecast performance of time series models based on realized partial (co)variances.

We find that in low dimensional settings it is hard, but not impossible, to improve upon the

simple fixed threshold of zero. In large dimensions, however, the zero threshold embedded

in realized semi covariances emerges as a robust choice.
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1 Introduction

We are extremely grateful for the opportunity to contribute to this special issue in honor of

Francis X. Diebold. Frank’s wide-ranging seminal contributions have importantly shaped the

research frontier in time series and financial econometrics over the past four decades.

As a case in point, Frank was among a small group of researchers in the 1980s to first

embrace the now widely-accepted empirical fact that financial market volatility is both time-

varying and highly predictable (Diebold, 1986). He was also among the first to explicitly recog-

nize that the variation in volatilities are strongly connected across assets and markets, and this

connectedness has important implications not only for forecasting, but also for financial asset

pricing and the practice of risk management. The factor ARCH class of models first proposed in

Diebold and Nerlove (1989), in particular, provides an especially convenient framework for suc-

cinctly characterizing these joint dynamic dependencies, and related parametric GARCH and

stochastic volatility type models remained the norm for modeling and forecasting time-varying

variances and covariances up until the early 2000s (see, e.g., the survey in Andersen, Bollerslev,

Christoffersen and Diebold (2006)).

Meanwhile, motivated by the increased availability of reliable high-frequency data for a

host of financial assets, Andersen, Bollerlsev, Diebold and Labys (2003) proposed the use of

traditional ARMA type procedures for directly modeling the dynamic dependencies in daily

and lower frequency so-called realized volatilities constructed from higher frequency intraday

returns (see also Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys

(2001) and Barndorff-Nielsen and Shephard (2002) for additional motivation and theoretical

justification). This idea spurred somewhat of a paradigm shift, and realized volatilities are now

widely-used in both academia and financial practice, with the “heterogenous autoregressive”

(HAR) model of Corsi (2009) having emerged as the most commonly-used specification (see

also Andersen, Bollerslev and Diebold (2007) for one of the earliest uses of the HAR model).
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The “classic” realized volatility measure is computed simply as the sum of squared high

frequency returns, and thus does not contain any information from the signs of these returns.

Motivated by the downside risk measures sometimes employed in asset pricing (dating back

to Roy (1952) and Markowitz (1959)), Barndorff-Nielsen et al. (2010) first proposed decom-

posing the total realized variation into separate up and down semivariance measures defined

by the summation of the squared positive and negative high-frequency returns. Underscoring

the practical usefulness of this decomposition from a volatility forecasting perspective, Patton

and Sheppard (2015) find that embedding the realized semivariances within the HAR model-

ing framework results in significantly improved volatility forecasts for aggregate equity index

returns, albeit only modest gains for individual equities. Bollerslev et al. (2020a) extend this

idea to a multivariate setting, and show how realized covariance matrices may be similarly de-

composed into four realized semicovariance components based on the signs of the underlying

high-frequency returns. They also go on to empirically demonstrate how this four-way decom-

position may be used in the construction of improved covariance matrix and portfolio variance

forecasts.

Set against this background, we propose an extension of the realized semivariance and semi-

covariance measures previously considered in the literature. Semi-variances and covariances

stratify returns by their sign; that is, using a “threshold” of zero. Our work in this paper is

directly inspired by a July 19th, 2018, post on Frank’s No Hesitation blog.1 After attending the

2018 NBER Summer Institute, Frank shared his thoughts on the intersection between two of

the presentations: Gu, Kelly and Xiu (2020) on the use of machine-learning methods to asses

the risk premiums in financial markets, and the aforementioned Bollerslev et al. (2020a) paper

on realized semicovariances. Contrasting the agnostic nature of the machine learning meth-

ods used in the former paper with the economically-motivated zero threshold employed in the

second paper, Frank concluded his post with the following musings:

1https://fxdiebold.blogspot.com/2018/07/machine-learning-volatility-and.html
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“So here’s a fascinating issue to explore: Hit the Bollerslev et al. realized covariance data

with machine learning (in particular, tree methods like random forests) and see what happens.

Does it “discover” the Bollerslev et al. result? If not, why not, and what does it discover? Does

it improve upon Bollerslev et al.?”

This special issue in honor of Frank’s many contributions, including those in volatility forecast-

ing, seems to us to be the perfect opportunity to answer Frank’s challenge.

In so doing, we firstly propose a new class of partial (co)variance measures, which allow for

tresholds other than zero, and for multiple thresholds. We use a data-driven approach to deter-

mine the optimal number and location of the thresholds, based on the out-of-sample forecasting

performance of a model using partial covariances with a given set of thresholds. Our algorithm

for determining the thresholds is inspired by tree methods, with the objective of dividing the

support of the joint return distribution into sub-regions to improve the quality of the forecasts.

However, our approach differs importantly from off-the-shelf tree methods in the sense that

the branching occurs at a different frequency from the dynamic modeling: the thresholds ap-

ply to the high-frequency intraday returns used in constructing the realized partial covariance

measures, while performance is assessed using the resulting daily volatility forecasts.

Our empirical analysis begins with a detailed investigation of the optimal choice of thresh-

olds in univariate volatility forecasting models. We use high frequency data on a set of highly

liquid Dow Jones Industrial Average (DJIA) individual stocks, as well as the S&P 500 aggregate

market index. We find that when restricting partial variances to a single threshold, zero does in-

deed emerge as the hero: models based on semivariances tend to do as well or better than more

flexible partial variance-based models. However, allowing for two or more thresholds leads to

significant forecast improvements. The locations of the optimal thresholds in the two-threshold

case are typically in the left and right tails of the distribution of the high-frequency returns,

suggesting that optimally chosen partial variances do not simplify to semivariances.
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We next look at multivariate volatility forecasting, with dimensions ranging from two to

fifty. To accommodate the increased dimension, we rely on a much wider set of S&P 500

constituent stocks. As in the univariate case, when the partial covariances are restricted to a

single threshold, zero emerges as the optimal choice. When allowing for multiple tresholds,

we find that an “enhanced” semicovariance model emerges as the winner: this model has one

threshold at zero, as in semicovariances, and another flexibly-chosen threshold, which tends

to be in the left tail of the intraday return distribution. Applying partial covariances to returns

with jumps removed, we find that a semicovariance-based model re-emerges as the preferred

specification.

The plan for the rest of the paper is as follows. Section 2 introduces partial variances and

covariances, and relates them to semivariances and covariances. The univariate and multivariate

volatility forecasting results are presented in Sections 3 and 4, respectively. Section 5 concludes.

The online Supplemental Appendix contains additional details and empirical results.

2 Partial variances and covariances

The realized semivariances of Barndorff-Nielsen et al. (2010) decompose realized variance into

two separate parts associated with positive and negative high-frequency returns. These mea-

sures naturally link to up- and down-side variances, and the long history of these types of

measures in finance (e.g., Hogan and Warren (1972, 1974), Fishburn (1977) and Ang, Chen

and Xing (2006)). Bollerslev et al. (2020a) extend the univariate semivariance measures to the

multivariate context with the notion of realized semicovariances.

To help fix ideas, let rt,k,i denote the return over the kth intradaily time-interval on day t

for asset i. Denote the N × 1 vector of returns, over equally-spaced intra-daily intervals, for

the set of N assets by rt,k ≡ [rt,k,1, ..., rt,k,N ]
′. Further, let n(x) ≡ min{x, 0} and p(x) ≡

max{0, x} denote the element-wise positive and negative elements of the real vector x, so that
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rt,k = n(rt,k) + p(rt,k). The three N × N daily realized semicovariance matrices are then

defined by:

Nt ≡
m∑
k=1

n(rt,k) n(rt,k)
′,

Mt ≡
m∑
k=1

n(rt,k) p(rt,k)
′ + p(rt,k) n(rt,k)

′,

Pt ≡
m∑
k=1

p(rt,k) p(rt,k)
′ ,

(1)

where m denotes the total number of intradaily return observations available per day. It follows

readily that,

RCOVt ≡
m∑
k=1

rt,kr
′
t,k = Nt +Mt +Pt. (2)

Thus, the semicovariances provide an exact, additive decomposition of the conventional daily

realized covariance matrix into “negative,” “positive,” and “mixed” semicovariance matrices.

Since RCOVt, Nt and Pt are all defined as sums of vector outer-products, these matrices are

all positive semidefinite. On the other hand, since the diagonal elements of Mt are zero by

definition, this matrix is necessarily indefinite.2 Note also that for a single asset (N = 1), Pt

and Nt are the positive and negative (scalar) realized semivariance measures, while Mt ≡ 0.

The threshold at zero that underlies the semivariation measures may seem somewhat arbi-

trary from a statistical perspective. However, from an economic perspective the choice of zero

is naturally motivated by notions of loss aversion and prospect theory (Kahneman and Tversky,

1980), which have been extensively studied in the empirical finance literature, see, e.g., Ang

et al. (2006) and Bollerslev, Patton and Quaedvlieg (2020c) and the many references therein.

Correspondingly, econometric volatility forecasts based on zero-threshold semi(co)variation

type measures have also been found to outperform the forecasts from otherwise comparable

2Since the two matrices that define Mt are each other’s transpose, we combine them into a single “mixed”
component. In situations where the ordering of the assets matter, these two terms could be treated differently
resulting in two different “mixed” components.
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forecasting models that do not exploit such measures, see, e.g., Kroner and Ng (1998), Cap-

piello, Engle and Sheppard (2006), Patton and Sheppard (2015) and Bollerslev, Patton and

Quaedvlieg (2020b).

We generalize semi(co)variances to partial (co)variances by considering the use of multiple

thresholds, rather than a single threshold at zero. In particular, we use the fact that

rt,k =
G∑

g=1

fg(rt,k) (3)

represents an exact decomposition of the kth intradaily return vector rt,k into G components

based on the partition functions fg:

fg(x) = x ◦ 1{cg < x ≤ cg+1}, (4)

where the tresholds satisfy c1 = −∞, cG+1 =∞, and cg−1 ≤ cg ∀ g. Analogous to the realized

semicovariances presented in equation (1), realized partial covariances are then defined by:

PCOV
(g,g′)
t ≡

m∑
k=1

fg(rt,k)fg′(rt,k)
′ (5)

Combining equations (2), (3) and (5) we easily see that realized partial covariances provide a

finer decomposition of the realized covariance matrix:

RCOVt ≡
m∑
k=1

rt,kr
′
t,k

=
m∑
k=1

f1(rt,k)f1(rt,k)
′ + f1(rt,k)f2(rt,k)

′ + ...+ fG(rt,k)fG(rt,k)
′ (6)

=
G∑

g=1

G∑
g′=1

PCOV
(g,g′)
t
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When the ordering of the assets is arbitrary, as in our empirical analysis below, it may again

make sense to combine the “mixed” partial covariances (where g 6= g′), leading to a decompo-

sition of RCOV into G(G + 1)/2 partial covariance matrices rather than G2 such matrices.

This, of course, is completely analogous to the definition ofM in equation (1).

Note that when the cross-sectional dimension is one, i.e., we only consider a single asset,

the G(G− 1)/2 “mixed” partial covariance terms reduce to zeros and we have only G realized

partial variances:

RVt =
m∑
k=1

f1(rt,k)
2 + ...+ fG(rt,k)

2 =
G∑

g=1

PV
(g)
t (7)

In both the univariate and multivariate cases, when G = 2 and f1(x) = n(x) and f2(x) = p(x),

realized partial (co)variances reduce to realized semi (co)variances. When G = 1, realized

partial (co)variances trivially reduce to the standard realized (co)variances.

The freedom to choose the number and location of the thresholds in the realized partial co-

variances affords a great deal of flexibility. Inspired by the widespread adoption of machine

learning techniques in many areas of empirical economics, in our empirical work below we rely

on algorithms rooted in regression trees to determine the number and locations of the thresh-

olds. A key difference, however, between off-the-shelf tree methods as in Breiman, Friedman,

Stone and Olshen (1984) and the approach that we use here is that our approach operates on

two different time scales, i.e., the forecasting model is estimated at the daily frequency, while

the thresholds are determined at the high-frequency intraday level. By contrast, traditional re-

gression tree models are estimated with data sampled at a single frequency. Moreover, the fore-

casting models estimated here are all linear in the parameters, while off-the-shelf tree-based

methods are inherently non-linear. Modern regression-based tree methods, such as random

forests (Breiman, 2001), also typically combine a large number of different trees to construct

the forecasts, rendering the interpretability of the branches difficult, while we purposely rely on
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a single “tree” thereby affording easier interpretation of the results.

3 Optimal partial variances for volatility forecasting

We begin our empirical investigations with an analysis of the optimal choice of threshold in uni-

variate volatility forecasting models. This analysis helps guide our analysis in the next section

of larger dimensional partial covariance matrices.

All of the empirical results in this section are based on high-frequency returns for the S&P

500 SPY ETF and the Dow Jones Industrial Average constituent stocks. The sample period

starts on April 21, 1997, one thousand trading days before the April 9, 2001 decimalization

of the NASDAQ, and ends on December 31, 2013, for a total of 4,202 observations. The raw

tick-by-tick data was obtained from the TAQ database. To help guard against complications as-

sociated with market microstructure “noise,” we follow the advice of Liu, Patton and Sheppard

(2015) and rely on a 5-minute sampling frequency in the construction of the daily realized mea-

sures.3 The same data and 5-minute sampling frequency was also previously used in Bollerslev,

Patton and Quaedvlieg (2016), and we refer to that article for additional justification and details

about our “cleaning” of the data.

To accommodate any large persistent movements in return volatility, we rely time-varying,

asset-specific quantiles of the volatility-standardized return distributions as thresholds when

actually implementing the realized partial variation measures. Specifically, for each asset, we

obtain the quantiles as

ct,g = RV
1/2
t · Q̂

(
rt,k

RV
1/2
t

; qg

)
, for g = 2, 3, ..., G, (8)

where Q̂ (z ; qg) returns the sample qg quantile of z. Since the median of almost all high-
3Diebold and Strasser (2013) discusses various underlying economic mechanisms that may possibly account

for this “noise.”
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frequency return distributions is nearly indistinguishable from zero, when qg = 0.5 partial

(co)variances effectively correspond to semi(co)variances. The use of other and/or additional

quantiles will, of course, result in distinctly different partial variation measures emphasizing

other parts of the time-varying joint return distributions.

The Heterogeneous Autoregressive (HAR) model of Corsi (2009) has arguably emerged as

the benchmark model for realized volatility-based forecasting, see, e.g., Bollerslev, Hood, Huss

and Pedersen (2018) and the many references therein. The basic RV-HAR model relies on the

lagged daily, weekly and monthly realized volatilities to linearly forecast the future volatility:

RVt = φ0 + φ1RVt−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + εt, (9)

where RVt−1|t−h = h−1
∑h

i=1RVt−i. An important extension of the RV-HAR model, due to

Patton and Sheppard (2015), decomposes the lagged daily realized variance into the two semi-

variances.4 We term this the SV-HAR model:

RVt = φ0 + φ+
1 SV

+
t−1 + φ−1 SV

−
t−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + εt, (10)

where SV +
t =

∑m
k=1 p(rt,k)

2 and SV −t =
∑m

k=1 n(rt,k)
2. In empirical applications of the

SV-HAR model, the SV −t typically appears relatively more important than the SV +
t term.

In a direct extension of the SV-HAR model, we define the class of PV(G)-HAR models

based on the realized partial variances:

RVt = φ0 +
G∑

g=1

φg
1PV

(g)
t−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + εt. (11)

In parallel to the SV-HAR model in (10) we only decompose the daily lag to allow for more
4The weekly and monthly realized variances can, of course, be decomponsed into their positive and negative

semivariance components in a similar manner. However, Patton and Sheppard (2015) report the largest gains came
from decomposing only the daily lag.
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Figure 1: PV(2)-HAR Forecasting Performance
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Note: The figure shows the out-of-sample MSE of the PV(2)-HAR model for the S&P 500
SPY ETF relative to the MSE for the RV-HAR model as a function of the quantile threshold
used in the definition of the partial variances.

clear-cut comparisons concerning the choice of threshold(s) and the forecast gains from freely

choosing the thresholds.

We begin our empirical analyses with a simple question: Do the forecasts from any PV(2)-

HAR model beat the forecasts from the semivariance-based SV-HAR model? The PV(2)-HAR

model, of course, collapses to the SV-HAR model when the threshold is fixed at zero, cor-

responding approximately to choosing the median as the partial variance threshold. Figure 1

plots the out-of-sample MSEs for the one-day-ahead forecasts for the S&P 500 portfolio, based

on daily-updated rolling sample estimation windows of 1,000 observation, as a function of the

quantile used in the construction of the partial variances. As the figure shows, the lowest MSE

is obtained close to the median threshold, corresponding to the SV-HAR model. Hence, for a

PV(G)-HAR type model to convincingly outperform the SV-HAR model, it must involve more

than one threshold (G > 2), or a dynamically varying choice of threshold(s).

To further investigate this, we next extend the models underlying Figure 1 to accommodate
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time-varying threshold(s). As above, we rely on rolling estimation windows of 1,000 observa-

tions for forecasting the one-day-ahead volatility. We allow the grid of quantiles to range from

0.05 to 0.95 in increments of 0.05. We select the threshold, or combination of thresholds, as the

quantiles that minimize the average of the MSE based on 5-fold cross-validation (CV).5 More

specifically, for each model, we estimate the model based on four of the five sub-samples and

compute the MSE for the fifth subsample. We then choose the quantile(s) that minimize the av-

erage MSE over the five different sub-samples. We consider four versions of the PV(G)-HAR

model: three using a fixed number of thresholds (G=1,2,3,4), and a version (denoted G∗) in

which we allow for a varying number of thresholds determined through CV. The latter model

thus uses between zero and three thresholds, such that it nests all the fixed threshold variants,

as well as the basic RV-HAR and SV-HAR models.

Table 1 summarizes the forecasting results for the S&P 500 portfolio and the results obtained

across all of the individual DJIA stocks.6 In addition to the PV(G)-HAR models, we also

report the results for the benchmark RV-HAR and SV-HAR models. First consider the model

performance in terms of MSE and QLIKE.7 For both the S&P500 and the individual stocks,

the PV(G)-HAR models with 2, 3 or a variable number of thresholds (G∗) outperform the basic

HAR model. Compared to the SV-HAR however, the PV(2)-HAR tends to perform slightly

worse, while the PV(3)-HAR and PV(G∗)-HAR offer clear improvements. The PV(4)-HAR

performs extremely poorly, both for the S&P500 and the individual stocks, indicating over-

fitting and too fine a partition of the realized variance.

To formally assess the performance of the models, each of the panels presents results of

Diebold and Mariano (1995) tests between the RV-HAR, the SV-HAR and the remaining mod-

5k-fold CV methods are widely used for model selection in statistics and machine learning (Arlot and Celisse,
2010; Cerqueira, Torgo and Mozetič, 2020). Bergmeir, Hyndman and Koo (2018) provide compelling evidence
that CV can also be effectively used to evaluate time-series models. Additional details on the specific CV procedure
that we use here are provided in the Supplemental Appendix S1.

6Parameter estimates for the different models are summarized in Supplemental Appendix S3
7QLIKE loss is computed as QLIKEt ≡ RVt/ht − log(RVt/ht)− 1, where ht denotes the forecast.
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els. For the S&P500, we present the p-values, while for the 28 individual DJIA stocks, we

present the number of rejections at the 5% level. While the SV-HAR clearly improves over RV-

HAR based on the numerical losses, statistical significance is often lacking. The improvements

is not significant for the S&P500 and 18 out of 28 stocks, based on MSE, while the results based

on QLIKE are stronger, being significant for the S&P500 and 18 stocks. On the other hand, the

PV(3) and PV(G∗) models significantly outperform the RV-HAR in almost all cases. They also

tend to significantly improve over the SV-HAR. This is further corroborated by the final row of

each panel, which presents p-values and frequency of inclusion of the 80% Model Confidence

Set (MCS) of Hansen, Lunde and Nason (2011). For the S&P500, the PV(3) and PV(G∗) are

both quite convincingly included in the MCS, as evidenced by their high p-values. Across the

individual stocks, we also observe that these same two models are almost always included in

the MCS. By comparison, the RV-HAR and SV-HAR models are included in the MCS for less

than half of the firms.8

The forecasting performance of the PV-HAR models discussed above demonstrated two

main points. First, improving over SV-HAR is difficult. When restricted to a single thresh-

old, consistently beating the zero threshold is very challenging. Rather, to get close to the

performance of the SV-HAR, we need two thresholds, with further improvements available by

dynamically selecting the thresholds using cross-validation. To help understand these findings,

it is instructive to consider the models that were actually selected by the PV(G∗)-HAR approach.

Table 2 presents summary statistics on the number and locations of the quantiles selected. The

first set of columns show that for the vast majority of stocks and most of the time, the model is

simply the PV(3) model. However, for a few of the stocks and certain time periods, only a single

thresholds is selected. The second set of columns provide summary statistics on the time-series

averages of the selected threshold, as well as their distributions across stocks. For the single

8As a robustness check, we repeated the entire analysis minimizing QLIKE in the CV step, resulting in very
similar findings and forecasting performance. These results are reported in Supplemental Appendix S2.
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Table 1: Univariate Models: Unconditional Forecasting performance
RV SV PV(2) PV(3) PV(4) PV(G∗)

Panel A: S&P500

MSE 2.5186 2.4345 2.4388 2.3923 2.8534 2.3923
p-val. dmRV 0.164 0.176 0.049 0.674 0.050
p-val. dmSV 0.821 0.011 0.715 0.011
p-val. MCS 0.404 0.132 0.198 1.000 0.587 0.892

QLIKE 0.1387 0.1361 0.1360 0.1347 0.2017 0.1348
p-val. dmRV 0.005 0.003 0.001 0.994 0.001
p-val. dmSV 0.345 0.072 0.996 0.079
p-val. MCS 0.041 0.396 0.396 1.000 0.082 0.753

Panel B: Individual Stocks

MSE 14.982 14.886 14.888 14.421 15.600 14.421
#sig. dmRV 10 13 24 0 24
#sig. dmSV 4 20 0 20
#sig. MCS 11 11 9 27 2 27

QLIKE 0.1547 0.1532 0.1529 0.1494 0.1828 0.1494
#sig. dmRV 18 19 26 0 26
#sig. dmSV 5 21 0 21
#sig. MCS 3 7 7 27 0 27
Note: The table reports the forecasting performance of the different models. The top panel
shows the results for the S&P 500. The bottom panel reports the average loss and 5% rejec-
tion frequencies of the Diebold-Mariano tests for each of the individual stocks. The one-sided
tests between PV-HAR against RV-HAR and SV-HAR are denoted by dmRV and dmSV , re-
spectively. MCS denotes the p-value of that model being in the Model Confidence Set, or
the number of times that model is in the 80% Model Confidence Set. PV(G∗) dynamically
chooses the best among the RV-HAR, SV-HAR and HAR-PV(G) models with 2, 3 or 4 thresh-
olds.

threshold model, the threshold is typically above the median, with an average of around 0.80

for the market index, and 0.66 for the individual stocks. When allowing for two thresholds, as

in the PV(3) model, the high thresholds are typically accompanied by an additional threshold in

the lower tail of the distribution, ranging roughly between the 0.05 and 0.15 quantiles. The final
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Table 2: Univariate Models: Quantile Selection
PV(G∗) Model Unc. Threshold Cond. Threshold

Selection Selection Selection
SV PV(2) PV(3) PV(4) PV(2) PV(3) PV(2) PV(3)

q̄2 q̄2 q̄3 q̄2 q̄2 q̄3

S&P 500
0.000 0.001 0.999 0.000 0.78 0.14 0.70 0.67 0.14 0.70

Stocks
5% Quantile 0.000 0.000 0.980 0.000 0.43 0.06 0.69 0.73 0.06 0.69
Mean 0.001 0.004 0.995 0.000 0.64 0.09 0.75 0.86 0.08 0.75
Median 0.000 0.000 0.998 0.000 0.64 0.08 0.76 0.95 0.08 0.76
95% Quantile 0.007 0.019 1.000 0.000 0.85 0.15 0.85 0.95 0.14 0.85

Note: The table reports the quantile selection of the PV(G) models. The first set of columns show
how often each number of thresholds are selected in the PV(G∗) model. The second set of columns
summarizes the thresholds for the PV(2) and PV(3) models. The final set of columns show the same
descriptives, conditional on the specific model being selected by the PV(G∗) model.

set of columns report the average quantile, conditional on PV(G∗) selecting the single or double

threshold model. As these results show, for the individual stocks the single threshold model is

almost exclusive chosen during times when the optimally selected threshold is relatively high.

The time-series averages of the selected quantiles reported in Table 2 only tell part of the

story. Going one step further, Figure 2 plots the cross-sectional averages and distributions

over time. The top row presents the results for the S&P 500 SPY ETF, while the bottom row

presents the results averaged across the individual stocks. In the single threshold case, the

quantiles selected for the market index are typically fairly high. However, they are closer to the

median around times of financial difficulties, starting with the recession in the early 2000s and

subsequently during the financial crisis of 2008. Interestingly, the value of the cross-validated

threshold for the market already dropped in early 2007, preceding the financial crisis and the

subsequent dramatic rise in the overall level of volatility. The results for the PV(3) model

(with two thresholds) shown in the top-right panel reveal similar dynamics, with both the upper

and lower thresholds converging to the median during the financial crisis. Compared to the
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Figure 2: Univariate Models: The time-series of selected threshold quantiles.
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Note: The top row presents the selected quantiles in the PV(2)- and PV(3)-HAR models for
the S&P 500 SPY ETF realized variance series. The bottom row shows the average selected
threshold across the DJIA stocks for the same two models. The time-series are smoothed
using a [t− 25 : t+ 25]-moving average.

results for the S&P 500, the values of the selected quantiles averaged across the DJIA stocks

appear quite stable through time. In the single threshold setting, the average quantile is typically

around 0.65. When allowing for two thresholds, a very low quantile combined with a fairly high

quantile emerge as the best choice.

The selection of two thresholds, one high and one low, is reminiscent of the HAR-J model of

Andersen et al. (2007), which decomposes the realized variance into separate continuous- and

jump-variation components. However, whereas the HAR-J model is based on the separately

estimated continuous and jump components, where the latter combines the variation stemming
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from both positive and negative jumps, our empirical results suggest that the direction of the

jumps actually matters, and that it is primarily the variation stemming from especially large

negative jumps that should be “filtered out” and treated differently in the construction of the

forecasts.9

Meanwhile, the challenge posed by Frank in his No Hesitation blog relates explicitly to the

forecast improvements afforded by the use of the semicovariance measures reported in Boller-

slev et al. (2020a). Hence, to directly address Frank’s questions, we next extend the above

univariate analyses to a multivariate context.

4 Multivariate partial covariance models

To allow for the construction of large dimensional portfolios, we expand our previous sample

of DJIA stocks to all stocks that were part of the S&P 500 index during the 1993-2014 sample

period. Removing stocks with fewer than 2,000 daily observations, this results in a total of

749 unique firms. We consider equally portfolios comprised of up to 50 stocks, with all of

the results reported below based on 100 such randomly selected portfolios of a given size.

Since the use of more extreme thresholds may easily result in many zero-valued realized partial

covariances, we reduce our grid search in the multivariate setting to thresholds ranging between

the {0.1,0.2,...,0.9} volatility-standardized quantiles.

The complications associated with market microstructure “noise” is further compounded

in the multivariate setting due to asynchronous prices, and the so-called Epps effect. To ad-

dress this issue, for the stoicks analyzed here, which includes some smaller-cap and less liquid

stocks, Bollerslev et al. (2020a) advocated the use of a coarse 15-minute sampling frequency

in the calculation of their realized semicovariance measures. While this sparse sampling ef-

9The Supplemental Appendix S6 contains a more thorough analysis of the forecast performance of the PV(G)-
HAR model based on the Conditional Superior Predictive Ability (CSPA) test of Li, Liao and Quaedvlieg (2020).
As that analysis also shows, the improved performance can only be partly attributed to the model isolating jumps.
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fectively alleviates the biases stemming from market microstructure “noise,” it obviously also

reduces the accuracy of the estimates compared to the estimates that would obtain with more

finely sampled returns in the absence of any “noise.” The literature has proposed a number of

alternative procedures to more efficiently address these issues, including the kernel-based ap-

proach (Barndorff-Nielsen, Hansen, Lunde and Shephard (2011)), pre-averaging (Christensen,

Kinnebrock and Podolskij (2010)), and subsampling (Zhang, Mykland and Aı̈t-Sahalia (2005)).

Out of these, the multivariate realized kernel has arguably emerged as the most popular “noise”

robust approach for realized covariance matrix estimation. Accordingly, we rely on realized

kernel-based estimates constructed from 1-minute returns, denoted MKt below, as our object

of interest and multivariate measure appearing on the “left-hand-side” in the various forecasting

models.

The smoothing out of the “noise” in the high-frequency returns that underlie the realized

kernel estimates is at odds with the intuition and motivation for the high-frequency return-based

decompositions of the covariance matrix that underlie the definitions of the semicovariance

and new partial covariance measures. Hence, to maintain interpretability of the new realized

measures that we use as explanatory variables on “right-hand-side” in our forecasting models,

we instead rely on a subsampling scheme, in which we subsample 15-minute returns at the

1-minute frequency: the 15-minute returns used in determining the thresholds for the partial

covariance being effectively void of the detrimental impact of microstructure “noise,” while

averaging over the 15 different subsampled estimates increase the precision.

More formally, let m denote the total number of high-frequency returns available per day

at the highest sampling frequency. Define M ≡ m/S, where S refers to the accumulation

factor, or number of subgrids (for simplicity assume that M is an integer). Let rst,k denote the

sequence of k = 1, ...,M − 1, lower-frequency intraday returns originating at the sth subgrid;

i.e., rst,k =
∑S

i=1 rt,kS+s+i. The subsampled realized partial covariances are then simply defined
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by:

˜PCOV
(g,g′)

t ≡ 1

S

S∑
s=1

[
M

M − 1

M−1∑
k=1

fg(r
s
t,k)fg′(r

s
t,k)
′

]
, (12)

where the partion functions fg are applied grid-by-grid. Effectively, this is simply the average

of the previously defined realized partial covariances estimated on each of the S overlapping

time grids. For notational convenience, we will drop the explicit use of tilde in the sequel, and

simply refer to the subsampled estimates byPCOVt. Similarly, we will refer to the subsampled

versions of the realized covariance and semicovariance matrices obtanied as special cases of

(12) byRCOVt and SCOVt for short.

Mirroring our univariate forecast analyses, we take the basic multivariate HAR model ap-

plied to the vech of the covariance matrices as our benchmark model,

vech(MKt) = φ0 + φ1vech(RCOVt−1) (13)

+ φ2vech(RCOVt−1|t−5) + φ3vech(RCOVt−1|t−22) + εt,

where φ0 is an N(N + 1)/2−vector, and the remaining coefficients are assumed to be scalar.

We will refer to this as the RCOV-HAR model. The SCOV-HAR model extends the benchmark

model to allow for different influences of the three daily semicovariance matrices:10

vech(MKt) = φ0 + φN
1 vech(Nt−1) + φM

1 vech(Mt−1) + φP
1 vech(Pt−1) (14)

+ φ2vech(RCOVt−1|t−5) + φ3vech(RCOVt−1|t−22) + εt.

Finally, in a parallel to the univariate models defined in (11), we consider new multivariate

10This model differs slightly from the specific model recommended in Bollerslev et al. (2020a), which involves
a complete HAR-structure on Nt, along with the monthly lag of Mt. However, it more closely resembles the
SV-HAR models analyzed in the previous section. It also provides a more natural benchmark against which to
assess the general PCOV(G)-HAR partial covariance class of models.
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PCOV(G)-HAR partial covariance-based models. Guided by the univariate results, we allow

for up to three partitions, resulting in a maximum of nine partial covariances, regardless of the

cross-sectional dimension. Given that the ordering of our assets is arbitrary, we combine the

“mixed” partial covariances, leaving us with a maximum of six partial covariances:

vech(MKt) = φ0 +
G∑

g=1

G∑
g′=g

φ
(g,g′)
1 vech(PCOV

(g,g′)

t−1 ) (15)

+ φ2vech(RCOVt−1|t−5) + φ3vech(RCOVt−1|t−22) + εt,

where

PCOV
(g,g′)

t ≡

 PCOV
(g,g)
t for g = g′

PCOV
(g,g′)
t + PCOV

(g′,g)
t , for g 6= g′.

(16)

We rely on the same 5-fold CV procedure to optimally select the number and values of the time-

varying thresholds. We do so by optimizing the multivariate MSE, or Frobenius norm, defined

as:

MSEt ≡ Tr((MKt −Ht)
′(MKt −Ht))/N

2,

whereHt denotes the model forecast.

Table 3 provides a summary of the different models that were selected for the different

portfolio dimensions N . Specifically, the columns titled RCOV and SCOV show the number

of times out of 100 for which the CV procedure selected the model in (13) or (15), respec-

tively. The row labelled SCOV+ refers to a model that adds one additional threshold to the

SCOV model (recall the SCOV model already contains a threshold at zero), while PCOV(2)

and PCOV(3) denote one- or two-threshold models, where all of the thresholds differ from

zero. As in the univariate case, the preferred number of thresholds is generally two: one of

PCOV(3) or SCOV+ is selected for between 94% and 100% of the portfolios across all values

of N . Interestingly, the basic RCOV model is never selected, while the SCOV model is only
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Table 3: Multivariate Models: PCOV(G∗)-HAR Model Selection
N 1 2 5 10 20 50

RCOV 0 0 0 0 0 0
SCOV 6 4 0 0 0 0
PCOV(2) 0 0 0 0 0 0
SCOV+ 30 36 38 80 95 100
PCOV(3) 64 60 62 20 5 0
Note: The table reports the frequency, out of 100 random portfolios, with which various
threshold combinations are selected, as a function of the portfolio dimension N . RCOV
implies no threshold, SCOV is the single zero threshold, PCOV(2) indicates a single non-zero
threshold, SCOV+ refers to two thresholds, one of which is zero, while PCOV(3) denotes two
thresholds, none of which equal zero.

selected for 6% of the randomly selected individual stocks (N = 1) and never for any of port-

folios involving 5 or more stocks. Taken as a whole, the SCOV+ model, which involves zero

plus one additional flexibly-chosen threshold, emerges as the clear winner, especially for larger

dimensions (N ≥ 10) where it is nearly always the preferred model.11

The emergence of the SCOV+ model as the preferred specification is further underscored by

Figure 3, which reports the distributions of the selected quantiles for the PCOV models across

the 100 random portfolios for different portfolio sizes N . As in the univariate case, the two

thresholds typically selected are zero and a low threshold. In fact, as Table 3 shows, for N = 50

that is the only model and set of thresholds selected.

The previous results all pertain to in-sample model selection and threshold estimation. We

next consider out-of-sample multivariate forecasting. In parallel to the univariate analysis, we

rely on rolling estimation windows of 1,000 days for recursively forecasting the covariance ma-

trices one-day-ahead.12 Because of the high computational costs associated with the calculation

of the multivariate forecasts, we select the thresholds for the PCOV models only once, using

11The actual parameter estimates for the SCOV+ models, reported in Supplemental Appendix S3, further reveal
that the joint most-negative partial covariance component typically stands out as the most important.

12Supplemental Appendix S5 contains complementary results for forecasting the variance of portfolios using
the partial covariances of the individual stocks included in the portfolios.

20



Figure 3: Multivariate Models: Quantile Selection
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Note: The figures shows the frequency with which the different quantiles are selected as the
optimal threshold(s). Each column corresponds to a different cross-sectional dimension N .
The shaded bar at 0.5 denotes the semicovariance threshold.

the initial training sample of the first 2,000 days. Note, this differs from the univariate analysis,

where we allowed for optimally chosen thresholds in each of the rolling estimation windows.

Table 4 reports the average MSE and QLIKE loss for the different models, together with

their prevalence in the corresponding 80% MCSs.13 While the average losses for the SCOV and

PCOV models are typically lower than the losses for the benchmark RCOV model, the MCS

does not appear to be able to convincingly discriminate between the models for portfolios of

size N ≤ 10. However, consistent with the earlier findings, the reductions in loss obtained

by the threshold models, and the partial covariation-based models in particular, appear to be

increasing in the cross-sectional dimension N . In fact, the RCOV model is never included in

any of the MCSs for the N ≥ 20 dimensional forecasts. Recalling the earlier results discussed

in Table 3 and Figure 3, N = 20 also coincides with the dimension for which the PCOV(G∗)-

HAR model consistently selects the SCOV+ model with a low second threshold. Thus, while a

variety of stock-specific thresholds appear to be optimal for the smaller dimensional portfolios,

the choice of zero, possibly augmented with a low additional threshold, emerges as a “robust”

13Multivariate QLIKE loss is computed as QLIKEt ≡ Tr(H−1
t MKt) − log |H−1

t MKt| −N , where Ht

denotes the covariance matrix forecast.
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Table 4: Multivariate Models: Forecasting Results
MSE QLIKE

N RCOV SCOV PCOV(G∗) RCOV SCOV PCOV(G∗)

1 22.943 22.590 21.429 0.178 0.168 0.155
(0.80) (0.85) (0.83) (0.65) (0.72) (0.72)

2 15.987 15.619 15.350 0.425 0.465 0.439
(0.77) (0.83) (0.93) (0.44) (0.33) (0.81)

5 7.314 7.121 6.987 1.293 1.242 1.248
(0.37) (0.49) (0.99) (0.22) (0.16) (0.97)

10 4.881 4.686 4.552 3.414 3.349 2.760
(0.13) (0.32) (0.98) (0.21) (0.21) (0.98)

20 3.702 3.574 3.461 9.541 9.275 8.726
(0.00) (0.25) (1.00) (0.00) (0.00) (1.00)

50 2.896 2.837 2.821 36.478 35.824 34.454
(0.00) (0.00) (1.00) (0.00) (0.00) (1.00)

Note: The table provides the MSE and QLIKE for the three HAR-based models, for various
cross-sectional dimensions N . The reported number is the average loss over 100 random
portfolios, while the number in parentheses presents the fraction of portfolios for which the
model is included in the 80% Model Confidence Set.

best choice in large dimensions.14

Our findings that the PCOV(G∗) models tend to select at least one threshold in the tails,

suggests that the success of the partial covariance-based forecasting models may be related to

“jumps.” In order to further investigate this interplay between the optimal choice of thresh-

old(s) and jumps, we consider a collection of alternative models, where in the spirit of the

C-HAR model of Andersen et al. (2007), we replace the different realized measures used in

predicting the future realized covariance matrices with the same measures constructed from

high-frequency returns void of jumps. Following the commonly used approach in the literature,

we rely on dynamic thresholds of three times the trailing scaled bipower variation, further ad-
14Supplemental Appendix S4 reports the results from forecasting the covariance matrices of stocks within the

same industry. Consistent with the idea of stock-specific thresholds, the relative performance of the PCOV(G∗)
models appears marginally better in that context, and the selected thresholds also differ from the SCOV+ thresh-
olds, suggesting that there is indeed some commonality in the choice of thresholds for related stocks.
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Table 5: Multivariate Models: PCOV(G∗)†-HAR Model Selection
N 1 2 5 10 20 50

RCOV† 0 0 0 0 0 0
SCOV† 6 4 10 15 21 32
PCOV(2)† 0 0 0 0 0 0
SCOV+† 45 33 57 78 79 68
PCOV(3)† 49 63 33 7 0 0
Note: The table reports the frequency, out of 100 random portfolios, with which various
threshold combinations are selected, as a function of the portfolio dimension N , for the
HAR models using continuous (partial) covariance on the right-hand side. RCOV† implies no
threshold, SCOV† is the single zero threshold, PCOV(2)† indicates a single non-zero thresh-
old, SCOV†+ refers to two thresholds, one of which is zero, while PCOV(3)† denotes two
thresholds, none of which equal zero.

justed for the strong intraday periodicity in volatility, to identify the jumps (see Bollerslev and

Todorov (2011) for additional details). We refer to these “continuous” realized variation mea-

sures and versions of the different models by the † symbol, as in, e.g., PCOV†. As above, we

also make use of subsampling techinques to further enhance the efficiency of all the estimates.

Looking at the resulting models selected by the 5-fold CV criteria reported in Table 5, the

basic SCOV† model is selected much more frequently than the SCOV model based on the

conventional measures that do not filter out jumps reported in Table 3.15 Meanwhile, the same

convergence towards the SCOV+† model evident for the conventional measures remains true,

although the removal of the variation stemming from jumps does negate the necessity of an

additional threshold for around 20-30% of the randomly selected larger portfolios.

Further elaborating on this, Table 6 shows the corresponding forecasting results, analogous

to Table 4 where the jumps were not removed in the calculation of the different measures. Taken

together, the results show that it is the form of the selected model that changes when jumps are

15Recall that the results for the conventional measures in Table 3 showed that the combination of the zero
threshold with one additional (typically negative) threshold was the preferred choice in the majority of cases,
especially for larger dimensions.
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Table 6: Multivariate Models: Forecasting Results Continuous (Partial) Covariances
MSE QLIKE

N RCOV† SCOV† PCOV(G∗)† RCOV† SCOV† PCOV(G∗)†

1 24.431 23.975 23.915 0.184 0.194 0.178
(0.94) (0.86) (0.89) (0.68) (0.57) (0.61)

2 14.994 14.751 14.480 0.434 0.434 0.411
(0.83) (0.88) (0.93) (0.58) (0.25) (0.77)

5 7.494 7.225 7.119 1.447 1.390 1.210
(0.53) (0.64) (0.96) (0.40) (0.18) (0.90)

10 5.029 4.867 4.800 3.478 3.292 3.207
(0.36) (0.53) (0.98) (0.17) (0.36) (0.92)

20 3.959 3.809 3.743 9.905 9.400 9.165
(0.09) (0.34) (1.00) (0.09) (0.39) (1.00)

50 2.970 2.946 2.938 36.796 36.404 35.861
(0.10) (0.42) (1.00) (0.00) (0.12) (1.00)

Note: The table provides the MSE and QLIKE for the three HAR-based models, for vari-
ous cross-sectional dimensions N , using jump-robust right-hand side variables. The reported
number is the average loss over 100 random portfolios, while the number in brackets presents
the fraction of portfolios for which the model is included in the 80% Model Confidence Set.

excluded, not the predictive fit. In particular, when estimating the partial covariances with high-

frequency returns void of jumps, the simpler semicovariance-based models are preferable, while

when jumps are not removed, a partial covariance-based model with a threshold that effectively

separates the negative jumps improves forecast performance.

5 Conclusion: Is zero optimal?

Motivated by a question posed by Frank Diebold in a 2018 blog post, this paper proposes a

generalization of the class of realized semi (co)variance measures introduced by Barndorff-

Nielsen et al. (2010) and Bollerslev et al. (2020a) to allow for a finer decomposition of realized

(co)variances. The new realized partial (co)variances allow for multiple thresholds, rather than

the single fixed threshold of zero used in semi (co)variances. The number and values of the
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thresholds used to construct the partial (co)variances can be freely chosen by the researcher. In

this paper, we adopt methods from machine learning to optimally choose the threshold(s) so as

to maximize the out-of-sample forecast performance of simple time series forecasting models

based on the realized partial (co)variances.

Overall we find that it is hard, but not impossible, to improve upon the simple fixed thresh-

old of zero embedded in realized semi (co)variances. In particular, when restricting attention to

partial (co)variances with a single threshold, the zero threshold cannot be consistently beaten.

However, when multiple thresholds are allowed for, a univariate model based on partial vari-

ances with two optimally-chosen thresholds significantly improve upon existing semivariance-

based models. In our multivariate analyses, an “enhanced” semicovariance-based model, with

one threshold at zero and another flexibly-chosen threshold, typically in the left tail, emerges as

the winner. Meanwhile, applying the same partial covariance models to variation measures con-

structed from high-frequency returns void of jumps, a semicovariance-based model re-emerges

as the preferred specification.
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