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Abstract

This paper provides a game-theoretic model of network formation with a continuous effort
choice. Efforts are strategic complements for direct neighbors in the network and display
global substitution/congestion effects. We show that if the parameter governing local strate-
gic complements is larger than the one governing global strategic substitutes, then all pair-
wise Nash equilibrium networks are nested split graphs. We also consider the problem of a
planner, who can choose effort levels and place links according to a network cost function.
Again all socially optimal configurations are such that the network is a nested split graph.
However, the socially optimal network may be different from equilibrium networks and ef-
ficient effort levels do not coincide with Nash equilibrium effort levels. In the presence of
strategic substitutes, Nash equilibrium effort levels may be too high or too low relative to
efficient effort levels. The relevant applications are crime networks and R&D collaborations
among firms, but also interbank lending and trade.
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1 Introduction

Many social and economic environments are characterized by local bilateral influences, induc-
ing local strategic complementarities, and global competition/congestion effects, which generate
global strategic substitutabilities. Frequent examples include the choice of criminal effort in a
network of criminals and production choices of firms engaging in bilateral R&D agreements. Fur-
ther applications are interbank lending and trade. We focus on the first two settings and briefly
explain the mechanism leading to the type of strategic interaction considered.1 In the case of
crime networks, local strategic complementarities are due to a direct know-how transfer on how
to commit a crime. That is, the criminal activities of a criminal’s direct neighbors in the network
translate into a lower probability of being caught and therefore increased incentives to commit
crimes. Global strategic substitution effects stem from global competition/congestion effects for
crime opportunities. For R&D collaborations, consider firms that compete in quantities in a com-
mon market. Production leads to learning-by-doing, while bilateral R&D agreements allow for
a direct, cost reducing know-how transfer, which gives rise to local strategic complementarities.
Global strategic substitution effects arise directly when the goods produced are substitutes and
sold in a common market. More generally, introducing competition/congestion effect is relevant
for many applications, as disregarding them often requires adopting strong assumptions. For
example, in the case of crime networks, one would need to assume that there is no competition
for crime opportunities, and for R&D networks that all firms operate in completely separate
markets. Similarly, disregarding global substitution effects implies for interbank lending that
consumers cannot substitute across loans, while in trade networks goods produced by different
countries cannot be substitutable.2

Network structures are crucial in determining individual behavior and aggregate outcomes.
It is therefore important to understand why certain network structures arise.3 In this paper we
endogenize the network in a simple game-theoretic setup, allowing for local strategic comple-
ments, as well as global strategic substitutes. In accordance with empirically observed networks,
we obtain nested split graphs, which are a subset of core-periphery networks. The defining
feature of nested split graphs is “nestedness” of neighborhoods in the following sense: agents
with a higher number of links are connected to all agents to which an agent with fewer links is
connected. Recently, these type of networks have drawn increased attention in the economics
literature on networks.4 The particular structure of crime networks depends on the type of crim-
inal activity. Canter (2004), for example, finds that networks of hooligans are less structured
than property crime and drug networks. However, the presence of a core group is described

1Formal derivations are provided for crime and R&D networks in the appendix. For a detailed discussion,
including interbank lending and trade, see König et al. (2014).

2See also König et al. (2014).
3A related discussion is provided in Jackson et al. (2017).
4Goyal and Joshi (2003) is a very early paper that features nested split graphs (the authors call them interlinked

stars). For a good discussion of nested split graphs, see König et al. (2014).
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as the most recognized structural feature.5 Nestedness and core-periphery structures have been
frequently observed in R&D networks.6

In the following we provide a brief description of the model, together with a more detailed
account of the main results. We propose a simple simultaneous move game, in which agents
choose a non-negative, continuous effort level and announce with whom they wish to be linked.
A bilateral link is created when the announcement is mutual. Gross payoffs are based on the
linear quadratic payoff function first presented in Ballester et al. (2006). We assume that
the parameter governing strategic complementarities is (weakly) larger than the one for global
strategic substitutes. Note that this is assumption has empirical support for the main applications
considered.7 Links are assumed to be unweighted, undirected and to incur a linear cost. The
equilibrium concept used is pairwise Nash equilibrium. Pairwise Nash equilibrium refines Nash
equilibrium and allows for deviations in which agents simultaneously create a link (and best
respond to each other’s effort level). This rules out configurations in which pairs of agents are
not connected, but both agents find it profitable to create a link among themselves. We find
that all pairwise Nash equilibrium networks are nested split graphs and that a pairwise Nash
equilibrium always exists. Finally, we analyze the problem of a planner, who can place links
according to a network cost function. It is shown that all optimal networks are again nested split
graphs. However, the optimal network may be different from equilibrium networks and efficient
effort levels do not coincide with equilibrium effort levels.

Ballester et al. (2006) was the starting point for a rich body of theoretical and empirical
research (see, for example, Calvó-Armengol et al., 2009, Ballester et al., 2010 and Helsley and
Zenou, 2014). However, endogenizing the network proved to be challenging. Recent efforts have
focused on models of network formation with stochastic elements and action choices in a dynamic
setting with myopic agents (see, for example, König et al., 2014 and König et al., 2019). In these
papers noise is introduced into the decision process and typically agents cannot revise their whole
linking strategy (e.g., only create at most one one-sided link, often at zero cost, or only delete
a single link) and/or the deletion of links is not strategic and occurs due to decay over time.
It is then shown that the stochastically stable networks of the dynamic process are nested split
graphs. One of the advantages of the aforementioned models is that they can be brought to the
data. However, the stochastically stable states obtained need not be Nash equilibria and are
therefore also not pairwise Nash equilibria (as illustrated in Example 1). In contrast we show in
a simple game-theoretic model that if the parameter governing local complements is larger than
the one governing global substitutes, then all pairwise Nash equilibria are nested split graphs.

Joshi and Mahmud (2016) assume the payoff function provided in Ballester et al. (2006) and
present a two-stage game, in which agents create links in the first stage and play Nash equilibrium

5See also Dorn and South (1990), Dorn, Murji and South (1992), Ruggiero and South (1997) and Johnston
(2000).

6See, for example, Tomasello et al. (2017), Kitsak et al. (2010), Rosenkopf and Schilling (2007).
7See König et al. (2019) for the case of R&D networks and, for example, Pattacchini and Zenou (2012) for

peer effects in crime.
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effort levels in the second stage. The authors show that with local complementarities and global
substitutes all pairwise stable equilibria are nested split graphs. However, only limiting cases
of parameters are considered and no existence results are provided for the network formation
game. Hiller (2017) studies pairwise Nash equilibrium networks assuming a general class of
payoff functions for which the linear-quadratic specification is a special case, but disregards the
global substitution term.8 Pairwise Nash equilibrium and socially optimal networks are shown to
be nested split graphs. However, in the presence of substitution effects, socially optimal networks
may display different type of structures within the class of nested split graphs. For linear network
cost functions the bang-bang type solution of an empty or complete network, as presented in
Hiller (2017), may not be socially optimal with global strategic substitutes (as illustrated in
Example 3). Note that introducing congestion/competition effects significantly complicates the
analysis. For the equilibrium characterization, we can follow Hiller (2017) for the outline of the
argument, but each step requires a different proof. For the efficiency result we need to resort to
a different proof strategy.

Belhaj et al. (2015) consider the linear quadratic payoff specification in Ballester et al. (2006),
disregarding the global substitution term and solve the following two planner problems. In the
first case the planner can place links according to a network cost function and agents play Nash
equilibrium effort levels, given the network. In the second case, the planner can not only choose
the network, but also agents’ effort levels. The authors show that in both cases the optimal
networks are nested split graphs. Note that in the absence of global substitution effects, the
two problems are closely related and one can show that characterizing one also characterizes the
respective other problem. This relationship breaks down when introducing global substitution
effects. We show here that in the latter case, i.e. when the planner can choose both the network
and effort levels, then again nested split graphs are socially optimal.9 The former case, however,
remains an open problem.

The paper is organized as follows. Section 2 provides the model description, while Section
3 shows that all pairwise Nash equilibria are nested split graphs and that a pairwise Nash
equilibrium always exists. Section 4 solves the planner’s problem. A formal derivation of the
payoff function for crime and R&D networks is provided in the appendix and we also relate our
payoff function in detail to Ballester et al. (2006). All proofs are relegated to the appendix.

8For further work on network formation games with simultaneous action and linking choices, see Bätz (2014),
Galeotti and Goyal (2010) and Kinateder and Merlino (2017).

9König et al. (2018) show that if the cost function is linear, then the first best solution is a nested split graph.
However, the proof relies on the linearity of what corresponds to the network cost function and therefore does
not extend to the type of network design problem, as presented in Belhaj et al. (2015).
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2 Model Description

Let N = {1, 2, ..., n} be the set of players with n ≥ 3. Each agent i chooses an effort level xi ∈ X
and announces a set of agents to whom the agent wishes to be linked, which is represented by
a row vector gi = (gi,1, ..., gi,i−1, gi,i+1, ..., gi,n), with gi,j ∈ {0, 1} for each j ∈ N\{i}. An entry
gi,j = 1 in gi is interpreted as agent i announcing a link to agent j, while an entry gi,j = 0 in gi

is taken to mean that agent i does not announce a link to agent j. Assume X = [0,+∞) and
gi ∈ Gi = {0, 1}n−1. The set of agent i’s strategies is denoted by Si = X × Gi and the set of
strategies of all players by S = S1×S2× ...×Sn. A strategy profile s = (x,g) ∈ S then specifies
each player’s individual effort level, x = (x1, x2, ..., xn), and intended links, g = (g1,g2, ...,gn).
A link between agents i and j, denoted by ḡi,j = 1, is created if and only if both agents i and
j announce the link. That is, ḡi,j = 1 if and only if gi,j = gj,i = 1 (and ḡi,j = 0 otherwise) and
therefore ḡi,j = ḡj,i. The undirected graph ḡ is defined as ḡ = {{i, j} ∈ N : ḡi,j = 1}. That
is, ḡ is a collection of links, which are listed as subsets of N of size 2. The presence of a link
ḡi,j = 1 allows players to directly benefit from the effort level exerted by the respective other agent
involved in the link. Denote the set of i’s neighbors in ḡ with Ni(ḡ) = {j ∈ N : ḡi,j = 1} and the
corresponding cardinality with ηi(ḡ) = |Ni(ḡ)|.10 The aggregate effort level of agent i’s neighbors
in ḡ, which we sometimes call agent i’s effort level “accessed”, is written as yi(ḡ) =

∑
j∈Ni(ḡ) xj.

The aggregate effort level of all agents other than i is written as zi(ḡ) =
∑

j∈N\{i} xj. We write
yi for yi(ḡ) and zi for zi(ḡ) when it is clear from the context. Given a network ḡ, ḡ + ḡi,j and
ḡ− ḡi,j have the following interpretation. When ḡi,j = 0 in ḡ, then ḡ + ḡi,j adds the link ḡi,j = 1,
while if ḡi,j = 1 in ḡ, then ḡ + ḡi,j = ḡ. Similarly, if ḡi,j = 1 in ḡ, then ḡ − ḡi,j deletes the link
ḡi,j, while if ḡi,j = 0 in ḡ, then ḡ − ḡi,j = ḡ. The network is called empty and denoted by ḡe if
ḡi,j = 0 ∀i, j ∈ N , while it is called complete and denoted by ḡc if ḡi,j = 1 ∀i, j ∈ N such that
i 6= j.

Payoffs to player i under strategy profile s = (x,g) are given by

Πi(s) = πi(x,ḡ)− ηi(ḡ)κ,

where κ denotes linking cost with κ > 0. Gross payoffs, i.e. payoffs excluding linking cost,
πi(x,ḡ), are given by the frequently employed linear-quadratic payoff function with local com-
plementarities and global substitutes (Ballester et al., 2006). That is,

πi(x,ḡ) = αxi − 1
2
(β + γ)x2

i + λxi
∑

j∈Ni(ḡ) xj − γxi
∑

j∈N\{i} xj ∀i ∈ N .

Note that gross payoffs πi(x,ḡ) can be written as a function of own effort, xi, the sum of effort
levels of direct neighbors, yi(ḡ) =

∑
j∈Ni(ḡ) xj, and the sum of effort levels of all agents different

10Note that agents are not linked to themselves and therefore not included in their own neighborhood.
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from i, zi(ḡ) =
∑

j∈N\{i} xj. For ease of notation we sometimes write πi(xi, yi, zi) and drop the
subscripts when they are clear from the context.

We assume λ > 0 and λ ≥ γ ≥ 0. The first assumption guarantees local strategic com-
plementarities and local positive externalities for changes in effort level accessed while keeping
total effort levels constant, i.e. via the addition/deletion of links.11 The second assumption
ensures local strategic complementarities and positive externalities for changes in effort levels
of connected agents.12 Together these assumptions yield local strategic complementarities and
positive externalities when a pair of agents creates a link and agents adjust their effort levels.
Note also that if γ > 0, then an agent i’s effort induces a negative externality on any agent that
is not a direct neighbor of i in ḡ. Moreover, effort levels are strategic substitutes for agents that
are not direct neighbors in ḡ. These assumptions are in accordance with our main applications.13

Finally, to guarantee existence and uniqueness of a Nash equilibrium in effort levels for any fixed
network ḡ, we can resort to Ballester et al. (2006) and assume that β > (n− 1)λ.

Below we present the best response and value function, which are useful for our equilibrium
characterization.

Best response function. The unique best response of player i to the vector of effort levels x−i

in network ḡ is given by

x̄i(x−i, ḡ) = x̄i(yi(ḡ), zi(ḡ)) = 1
β+γ

(
α + λ

∑
j∈Ni(ḡ) xj − γ

∑
j∈N\{i} xj

)
.

Value function. The maximized gross payoff for x−i in network ḡ is given by

πi(x̄i,x−i, ḡ) = vi(yi(ḡ), zi(ḡ)) = 1
2(β+γ)

(
α + λ

∑
j∈Ni(ḡ) xj − γ

∑
j∈N\{i} xj

)2

.

To simplify notation, we often write xi, yi, zi, πi, x̄i and vi, and drop the subscripts when it is
clear from the context.

Next we define pairwise Nash equilibrium (PNE). When agents i and j deviate to create a
link, then deviation effort levels are assumed to be mutual best responses (while the remaining
agent’s effort levels remain unchanged). The corresponding deviation effort levels are denoted
by x′i = x̄(yi(ḡ) +x′j, zi(ḡ) +x′j−xj). We sometimes use the notation x′i(ḡ + ḡi,j) to denote agent
i’s deviation effort level when creating a link with agent j.

11Note that ∂2π(x, y, z)/∂x∂y = λ > 0 and ∂π(x, y, z)/∂y = λxi ≥ 0 holds ∀x, y, z.
12To see this, we can write zi = yi +

∑
j /∈{Ni(ḡ)∪{i}} xj and note that when an agent’s neighbors change

their effort levels, then not only yi, but also zi changes. The payoff function can then be written as πi(x,ḡ) =
αxi − 1

2 (β + γ)x2i + λxiyi − γxi(yi +
∑

j /∈{Ni(ḡ)∪{i}} xj), so that ∂2π(x, y, z)/∂x∂y = λ − γ ≥ 0 ∀x, y, z and
∂π(x, y, z)/∂y = (λ− γ)xi ≥ 0 ∀x, y, z.

13For example, for the case of R&D networks, König et al. (2019) provide estimates for λ and γ and show that
λ > γ > 0. See Pattacchini and Zenou (2012) for peer effects in crime.
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A strategy profile s = (x,g) is a pairwise Nash equilibrium iff

• for any i ∈ N and every si ∈ Si, Πi(s) ≥ Πi(si, s−i);

• for all ḡi,j = 0, if Πi(x
′
i, x
′
j,x−i,−j, ḡ + ḡi,j) > Πi(s),

then Πj(x
′
i, x
′
j,x−i,−j, ḡ + ḡi,j) < Πj(s).

Note that a pairwise Nash equilibrium is both a Nash equilibrium and pairwise stable and
therefore refines Nash equilibrium. Pairwise Nash equilibrium allows for deviations where a
pair of agents creates a link (and deviating agents best respond to each other’s effort level).
Furthermore, pairwise Nash equilibrium allows for deviations in which an agent deletes any
subset of existing links (and adjusts her effort level). However, deviations where a pair of agents
creates a link and/or adjusts effort levels and simultaneously deletes any subset of existing links
are not considered. We write (x(ḡ), ḡ) to denote a network ḡ and the corresponding vector of
Nash equilibrium effort levels, x(ḡ). The configuration (x(ḡ), ḡ) is a pairwise Nash equilibrium
if and only if the above conditions are satisfied for all agents/pairs of agents.

We sometimes write g′i for an agent i’s deviation linking strategy and denote the network
after proposed deviation by ḡ′i. We drop the subscript when it is clear from the context. If
ḡi,j = 0, then we write ḡ′i,j = 1 to denote that agents i and j create a link.

3 Network Formation

Note first that for a configuration (x(ḡ), ḡ) to be a pairwise Nash equilibrium, we need that
agents play Nash equilibrium effort levels given the network ḡ. To show existence of a unique
Nash equilibrium in effort levels for any fixed network, we can turn to Theorem 1 in Ballester
et al. (2006). We then show that Nash equilibrium effort levels must be equal for all players in
a complete component and that singleton agents display same effort levels. Both of the latter
statements follow directly from the best response functions.

Proposition 1: For any fixed network, ḡ, there exists a unique NE in effort levels and the
unique NE is interior. Furthermore, (i) NE effort levels are equal for all agents in a complete
component, (ii) NE effort levels are equal for all singleton agents.

Before presenting Proposition 2, which shows that a pairwise Nash equilibrium always exists,
we describe two cost thresholds, κ and κ, which are formally defined in the appendix (Definition
1). The lower threshold, κ, is given by the gross marginal payoff when a pair of agents creates a
link in the empty network, ḡe. The higher threshold, κ, is defined as the average gross marginal
payoff of linking to n − 1 agents in the complete network, ḡc. We denote the unique Nash
equilibrium effort level in the complete network, ḡc, by x(ḡc) and the unique Nash equilibrium
effort level in the empty network, ḡe, by x(ḡe).
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Since the lower of the two bounds, κ, is defined as the marginal payoffs of a pair of agents
creating a link in the empty network, the empty network is a pairwise Nash equilibrium for
linking cost κ ≥ κ. In turn, the higher of the two bounds, κ, is given by the average gross
marginal payoff of linking to n − 1 agents in the complete network. Since the value function is
convex in effort level accessed (for any fixed value of zi) and all agents display the same Nash
equilibrium effort levels, an agent in the complete network either finds it profitable to delete all
links or none. Therefore, if κ < κ, then no agent finds it profitable to delete any links and the
complete network is a pairwise Nash equilibrium. One can then show that κ < κ always holds
for λ ≥ γ, which guarantees that a pairwise Nash equilibrium always exists, as summarized in
the statement of Proposition 2.

Proposition 2: κ < κ holds. Furthermore, (i) if κ < κ then (x(ḡc), ḡc) is a PNE, (ii) if κ > κ

then (x(ḡe), ḡe) is a PNE and (iii) if κ ∈ [κ, κ] then (x(ḡc), ḡc) and (x(ḡe), ḡe) are PNE.

We formally define nested split graphs below, which are a strict subset of core-periphery
networks.14,15 Note that the star, the complete and the empty network are nested split graphs.

Definition 2: A network ḡ is a nested split graph if and only if

[ḡi,l = 1 and ηk(ḡ) ≥ ηl(ḡ)]⇒ ḡi,k = 1.

Below we present our first main result, namely that all pairwise Nash equilibrium networks
are nested split graphs. Moreover, the ranking of effort levels, number of links and gross payoffs
coincides.

Theorem 1: In any PNE, (x, ḡ), the network ḡ is a nested split graph such that xi < xk ⇔
ηi(ḡ) < ηk(ḡ)⇔ v(yi(ḡ), zi(ḡ)) < v(yk(ḡ), zk(ḡ)) holds.

To build intuition for Theorem 1, it is instructive to first consider the case when γ = 0. The
value function can then be thought of as independent of zi and strictly convex in yi. Due to the
strict convexity of the value function, agents that access higher effort levels benefit more from
linking to any particular agent. Conversely, agents gain relatively more from linking to agents
with higher effort levels. Moreover, due to strategic complementarities, agents that access higher
effort levels also exert higher effort levels. Then, in any pairwise Nash equilibrium, agents with
higher effort levels (and therefore higher effort levels accessed) must be linked to all agents to
which agents with lower effort levels (and therefore lower effort levels accessed) are connected.
Neighborhoods are nested and agents with a higher number of links are connected to all agents
to which agents with fewer links are connected. In other words, if an agent is connected to some

14A network ḡ is a core-periphery network if the set of agents N can be partitioned into two sets, C(ḡ) (the
core) and P (ḡ) (the periphery), such that ḡi,j = 1 ∀i, j ∈ C(ḡ) and ḡi,j = 0 ∀i, j ∈ P (ḡ).

15For a formal proof that all nested split graphs are core-periphery networks see Chvátal and Hammer (1977).

8



agent with a given number of links, then the former agent is connected to any agent with a
(weakly) higher number of links than the latter agent. This corresponds to the definition of a
nested split graph. As the network is nested in any pairwise Nash equilibrium, a higher number
of links also implies a higher effort level accessed and, since the value function is increasing in
effort levels accessed, higher gross payoffs.

The case when γ > 0 is more involved. Note that γ > 0 introduces a negative externality
in the sum of the respective other agents’ effort levels. This implies a difference in payoffs
whether an increase in effort levels accessed stems from the creation of a new link or an increase
in (existing) neighbors’ effort levels. Moreover, an agent’s value function is strictly convex in
the sum of direct neighbors’ effort level, yi, for any fixed aggregate effort level of the remaining
agents, zi. But, due to effort level adjustments in a link creation, the aggregate effort level of
remaining agents changes when creating new link. One can show that agents always increase
their effort levels when creating a new link and, since λ ≥ γ, agents are no worse off when direct
neighbors increase their effort levels. This allows us to establish that, if an agent does not find it
profitable to delete a link with an agent exerting a given effort level, then it is profitable to create
a link to any agent with a weakly higher effort level. Additionally, the aggregate effort levels of
all remaining agents, zi, is lower the higher own effort level and, since the cross derivative of the
value function with respect to yi and zi is negative, agents with a higher effort level gain relatively
more from creating a new link. From the first order conditions one can then show that agents
displaying a higher effort level also access higher effort levels. That is, agents with higher effort
levels (and therefore higher effort levels accessed) are linked to all agents to which agents with
lower effort levels (and therefore lower effort levels accessed) are linked to and neighborhoods are
nested. Again reinforcing incentives to create and sustain links yield nested split graphs as the
only pairwise Nash equilibrium networks.16

Next we provide an example that highlights differences of our results relative to the literature
using stochastic stability. König et al. (2018) employ the same gross payoff function as the one
presented here, but in a dynamic setting with myopic agents. Agents receive opportunities at
predetermined rates to either 1) adjust their effort level, 2) create a single link or 3) delete a
single link.17 Link formation is one-sided, but both agents involved in the link incur a linking
cost. The latter assumption is justified by the fact that, since agents cannot revise their effort
levels when creating a single link, the marginal benefit of i creating a link to j is always the
same for both agents, i.e. λxixj. Note that this is not the case in our model, because agents
can adjust their effort levels when creating links. The characterization of equilibrium in König
et al. (2018) is then derived in the form of a Gibbs measure when the level of noise approaches
zero. It is shown that in any stochastically stable state a link between a pair of agents i and j

16Conditions for the existence of a pairwise Nash equilibrium other than the complete or the empty network
(for example a star network) can easily be obtained and are available from the author upon request.

17The underlying rationale is that there is some inertia in changing links or output levels, similar to Calvo
pricing models with price stickiness. The advantage of this assumption is that it allows the authors to derive a
likelihood function that can be conveniently estimated with real world data.
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is present if and only if λxixj > κ. The example below shows that a configuration that is in the
support of the stochastically stable states need not be a (pairwise) Nash equilibrium of the the
static game. The reason is that under Nash equilibrium we allow for deviations in which agents
adjust their effort levels when deleting a link and agents may delete any subset of links.

Example 1: Assume n = 8, α = 271/32, β = 8, λ = 1, γ = 1/2, κ = 1 and ḡ is a star
network. Denote by xc(ḡ) the Nash equilibrium effort level of the agent in the center and by
xp(ḡ) the Nash equilibrium effort level of agents in the periphery. We round numerical values
to the second decimal. Then xc(ḡ) = 1.32, xp(ḡ) = 0.79 and therefore λxcxp = 1.05 > κ, while
λxcxp = 0.63 < κ. The above configuration is therefore part of the stochastically stable states,
as shown in König et al. (2018). However, when accounting for adjustments in effort levels, the
marginal payoff for an agent in the periphery from its link to the center is 0.95, while the average
payoff for the central agent from her links to all peripheral players is 0.79. That is, all players
have an incentive to delete all their links and the star network is not a Nash equilibrium (and
therefore also not a pairwise Nash equilibrium).

4 A Planner’s Problem

In this section we present the problem of a planner, who chooses effort levels and can place links
at a cost. The total cost of the network (the network cost) is given by Φ(η(ḡ)), where η(ḡ) is the
total number of links in network ḡ. Assume that Φ(0) = 0 and Φ′(·) > 0. To simplify notation we
sometimes write Φ(ḡ) for Φ(η(ḡ)) and η for η(ḡ). The case of linear linking cost κ corresponds
to a linear Φ and Φ(η)−Φ(η− 1) = 2κ ∀η. Note that then the solution of the planner’s problem
coincides with the first best solution of the corresponding network formation game. The planner
aims to maximize total social welfare, which is defined as the sum of individual gross payoffs
minus the network cost. For any strategy profile s = (x,g) and resulting network, ḡ, social welfare
is given by

W (x,g) =
∑

i∈N πi(x, ḡ)− Φ(ḡ).

A strategy profile ŝ is socially optimal if W (̂s) ≥ W (s) ∀s ∈S. Denote the vector of efficient
effort levels for a given network ḡ with x̂(ḡ) and agent i’s entry in vector x̂(ḡ) by x̂i(ḡ). That is,
x̂(ḡ) yields the highest sum of payoffs for a given network, ḡ, so that W (x̂(ḡ), ḡ) ≥ W (x(ḡ), ḡ)

∀x ∈ Rn
+. To simplify notation, we sometimes write x̂ for x̂(ḡ) and x̂i for x̂i(ḡ). Denote

the socially optimal network by ĝ, so that W (x̂(ĝ), ĝ) ≥ W (x̂(ḡ), ḡ) ∀ḡ ∈ G. For a vector
of parameters θ = (α, β, λ, γ), we assume that 2λ/(β − γ) < 1/(n − 1) and β > γ, which
ensures that the problem is well defined. To see this, define θ̃(θ) = (α̃(θ), β̃(θ), λ̃(θ), γ̃(θ)) with
α̃(θ) = α, β̃(θ) = β − γ, λ̃(θ) = 2λ, γ̃(θ) = 2γ. The assumption β > γ guarantees that β̃ > 0.
Note also that we allow for γ > λ. One can then show via the first order conditions that the
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vector of efficient effort levels, x̂(ḡ, θ), for parameter vector θ is equal to the vector of Nash
equilibrium effort levels, x(ḡ, θ̃), for parameter vector θ̃. Since then α̃/β̃ < 1/(n − 1) holds, we
know from Ballester et al. (2006) that x(ḡ, θ̃) exists and is unique. Therefore, x̂(ḡ, θ) exists and
is unique. For each network ḡ we can then calculate a finite maximum value associated with it,
given by W (x̂(ḡ), ḡ). Since there is a finite number of networks for a given number of agents,
the optimization problem is well defined.

Note, however, that Nash equilibrium effort levels are generically not the same for different
parameter values, i.e. x(ḡ, θ̃) 6= x(ḡ, θ). Therefore, Nash equilibrium effort levels and the socially
optimal effort levels typically do not coincide for a given vector of parameters θ. Likewise, there
are pairwise Nash equilibrium networks that are different from the socially optimal network.
This will, for example, be the case when there is multiplicity of equilibria. Moreover, it is easy to
construct examples such that the socially optimal network is not sustainable as a pairwise Nash
equilibrium.

Next we define a neighborhood switch, as first presented in Belhaj et al. (2016), which
will be useful for showing our result. Take agents j and k and let Nj\k(ḡ) be the set of agent
that are neighbors of j but not of k. More formally, define Nj\k(ḡ) as Nj\k(ḡ) = {i ∈ N :

ḡi,j = 1 and ḡi,j = 0}. A neighborhood switch from j to k, written as a N(j,k)-switch, is a reallo-
cation of all links between j and agents in Nj\k(ḡ) to links between k and agents in Nj\k(ḡ).

Definition 3 (Belhaj et al., 2016): (Nj\k-switch). Consider a network ḡ. A Nj\k-switch is a
reallocation of links leading to the network ḡ′ where ḡ′ = ḡ +

∑
l∈Nj\k

ḡk,l −
∑

l∈Nj\k
ḡj,l.

We are now in the position to present our second main result, which shows that any socially
optimal configuration must be such that the network is a nested split graph.

Theorem 2: In any optimal strategy profile, ŝ, ĝ is a nested split graph. Moreover, x̂i(ĝ) >

x̂j(ĝ)⇔ ŷi(ĝ) > ŷj(ĝ)⇔ η̂i(ĝ) > η̂j(ĝ) holds.

In the following we outline the main arguments used. Belhaj et al. (2016) show for a payoff
function which corresponds to the case when α = 1, β = 1, λ = δ and γ = 0, that the sum of
Nash equilibrium effort levels strictly increases after a Nj\k-switch from an agent j with lower
Bonacich centrality to an agent k with higher Bonacich centrality. Since for γ = 0 the sum of
Nash equilibrium effort levels are proportional to the sum of Bonacich centralities, the sum of
Bonacich centralities also increases strictly after a Nj\k-switch. Note next that from Ballester et
al. (2006) we know that the sum of Nash equilibrium effort levels is strictly increasing in the sum
of Bonacich centralities. That is, we know that after a Nj\k-switch the sum of Nash equilibrium
effort levels also increases strictly when γ > 0 (where we set δ = λ/β). One can then show via
the first order conditions that for a given network ḡ, the socially optimal payoffs are proportional
to the sum of the socially optimal effort levels. Since these are equal to the corresponding Nash
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equilibrium effort levels for θ̃, we know that a Nj\k-switch also strictly increases socially optimal
payoffs when γ > 0. Finally, Belhaj et al. (2016) show that the only networks where no Nj\k-
switch from an agent with lower Bonacich centrality to an agent with higher Bonacich centrality
is possible are nested split graphs. Therefore, all socially optimal networks ĝ are nested split
graphs. The second part of the statement in Theorem 2, regarding effort levels, effort levels
accessed and agents’ degrees follows directly from the fact that the efficient effort levels for θ
coincide with the Nash equilibrium effort levels for θ̃. Finally, note that since our proof involves
rewiring of links, the network cost remains unchanged after rewiring, irrespective of the particular
shape of the network cost function Φ. In other words, for any optimal number of links to be
placed by the planner, the socially optimal network is a nested split graph.

Next we present an example with a network cost of 2κ for each link. The complete and
the star networks are both pairwise Nash equilibrium networks, while the complete network is
the socially optimal network. Note further that the center’s pairwise Nash equilibrium effort
level is too low, while periphery agents’ pairwise Nash equilibrium effort levels are too high,
when comparing with the efficient effort levels for a star. This is different from the case when
disregarding congestion/substitution effects, where pairwise Nash equilibrium effort levels are
always lower than what would be socially optimal. Finally, we provide a network cost function,
such that the star network is optimal.18

Figure 4.1: Example 2

Example 2: Assume n = 6, α = 17, β = 15, λ = 17/26, γ = 1/5 and κ = 5/6. Assume that
placing a link incurs a cost of 2κ. Then the socially optimal network is the complete network,
while both the complete and the star network are pairwise Nash equilibria. The subscript c
denotes the effort level of an agent in the center of a star, while the subscript p denotes the effort
level of a peripheral agent. Effort levels and the total payoffs are rounded to the second decimal.
For the star network we find that the Nash equilibrium effort level of the center of the star is
lower than what would be efficient, i.e. xc(ḡstar) = 1.28 < x̂c(ḡ

star) = 1.44, while the converse
18Note that if Φ is strictly convex, then a sufficient condition for the socially optimal network ĝ to be different

from the empty and complete network is given by Φ(1) ' 0 and Φ(n(n−1)
2 ) >

∑
i∈N πi(x̂(ḡc), ḡc).
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is true for periphery players, i.e. xp(ḡstar) = 1.1 > x̂p(ḡ
star) = 1.09. Note that for network cost

function Φ(η) = (1/5)η2 the star socially optimal.

Next we highlight a further difference to the case when no congestion effects are present. Recall
that if γ = 0, then for a linear network cost function the socially optimal network is either empty
or complete (see Hiller, 2017). With γ > 0, however, even with a linear network cost function,
networks that are neither complete nor empty may be socially optimal. We provide an example
such that in the efficient configuration the network is a star.

Figure 4.2: Example 3

Example 3: Assume n = 3, α = 89, β = 48, λ = 49/39, γ = 174/5, κ = 847/4218. Assume
that placing a link incurs a cost of 2κ. Then the socially optimal network is a star network
and the one link network yields higher total payoffs than the empty and the complete network.
Effort levels are stated below and are rounded to the second decimal, total payoffs to the fourth
decimal.

5 Conclusion

This paper presents a simple model of network formation in the presence of local strategic
complements and global strategic substitutes. We show that if, in accordance with empirical
estimates, the parameter governing local strategic complements is larger than the one governing
global strategic substitutes, then any pairwise Nash equilibrium displays a nested split graph.
We then solve a planner’s problem, in which the planner may choose effort levels and place
links according to a network cost function. We show that the socially optimal networks are again
nested split graph. However, socially optimal networks may differ from pairwise Nash equilibrium
networks and Nash equilibrium effort levels do not coincide with socially optimal effort levels.
The relevant applications are crime and R&D networks.
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6 Appendix

The relationship with Ballester et al. (2006)

Ballester et al. (2006) start by assuming the utility function below

ui(x1, ..., xn) = αxi + 1
2
σx2

i +
∑

j 6=i σijxixj,

with α > 0 and σ < 0. By defining σ = min{σij | i 6= j} and σ = max{σij | i 6= j}, the utility
functions is rewritten as follows

ui(x) = αxi − 1
2
(β − γ)x2

i − γxi
∑

j∈N xj + λ
∑

j∈N gijxixj,

where γ = −min{σ, 0} ≥ 0, λ = σ + γ ≥ 0. The authors assume λ > 0 (and thereby rule out
the case when σ =σ) and interpret gij = (σij + γ)/λ as a directed link from i to j in network g.
Note that ui(x) can then be rearranged and rewritten as

ui(x) = αxi − 1
2
(β + γ)x2

i − γxi
∑

j∈N\{i} xj + λ
∑

j∈N gijxixj.

When σij ∈ {σ, σ} for all i 6= j, then adjacency matrix corresponding to g is a symmetric
(0, 1)-matrix and g is undirected and unweighted. We further assume that λ ≥ γ, which yields
strategic complementarities in effort levels for connected agents. In the context of Ballester et
al. (2006) this corresponds to σ ≥ 0. Finally, note that when σ = 0, then λ = γ > 0.

Derivation of payoff function: Crime

Before defining pairwise Nash equilibrium, the above payoff function is derived, based on Jackson
and Zenou (2014) in the context of crime. Assume that expected gains of crime to agent i are
given by

πi(x,g) = bi(x)− pi(x,g)f ,

with bi(x) = α′xi − 1
2
(β − γ)x2

i − γxi
∑

j∈N xj

pi(x,g) = p0xi(A− λ′
∑

j∈Ni(ḡ) xj).

Expected cost of criminal activity, pi(x,g)f , increases in own criminal activity, xi, since being
involved in more criminal activities increases the chance of being caught. Local strategic comple-
mentarities stem from a decrease in the apprehension probability in direct neighbors’ involvement
in crime, due to a direct know-how transfer. Note that A is assumed to be sufficiently large, so
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that the apprehension probability is always positive for all criminals.19 Finally, global strategic
substitutes are due to congestion effects for crime opportunities, captured by γxi

∑
j∈N xj in the

expression for bi(x).20

Direct substitution yields

πi(x,g) = (α′ − p0fA)xi − 1
2
βx2

i + p0fλ
′xi
∑

j∈Ni(ḡ) xj − γxi
∑

j∈N\{i} xj.

For α = α′ − p0fA > 0 and λ = p0fλ
′ these payoffs are equivalent to the specification used in

Ballester et al. (2006).

Derivation of payoff function: Research and Development

We present here the arguably simplest derivation of the payoff specification in Ballester et al.
(2006) in the context of R&D collaborations. For alternative derivations which include R&D
efforts and explicitly model consumers and multiple markets see, for example, König (2016).
Firms may enter into R&D collaborations, which cause knowledge spillovers due to learning-by-
doing effects. Cost reduction depends on a firm’s own production level and on the production
level of collaborating firms. Given production level qi, marginal cost of firm i, ci, are given by

ci = c− µqi − λ
∑

j∈Ni(g) qj

Firm i’s profits are given by

πi = piqi − ciqi.

Assume inverse demand for the good qi is given by pi = a − bqi − γ
∑

j 6=i qj. Substituting into
firm i’s profits we obtain

πi = (ai − bqi − γ
∑

j 6=i qj)qi − (ci − gqi − λ
∑

j∈Ni(g) qj)qi.

Collecting terms yields

πi = (a− c)qi − (b− g)q2
i + λqi

∑
j∈Ni(g) qj − γqi

∑
j 6=i qj.

Setting a, c, b and g such that (a− c) = α, (b− g) = β + γ then yields the specification used in
Ballester et al. (2006).

19See König, Liu and Zenou (2014) for how to calculate an appropriate lower bound on A.
20One way to argue for as to why congestion effects should affect agents with higher criminal activity more, as

reflected in the term γxi
∑

j∈N xj , is that when aggregate crime levels are higher, the public may become more
vigilant, which in turn has a higher impact on agents with high individual levels of criminal activity.
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Proposition 1: For any fixed network, ḡ, there exists a unique NE in effort levels and the
unique NE is interior. Furthermore, (i) NE effort levels are equal for all agents in a complete
component, (ii) NE effort levels are equal for all singleton agents.

Proof. Ballester et al. (2006) applies to the payoff function considered and we can therefore
rely on Theorem 1 in Ballester et al. (2006). More specifically, a NE exists, is unique and
interior if β > λµ1(ḡ), where µ1(ḡ) is the largest eigenvalue of the adjacency matrix of ḡ.
Note that the largest eigenvalue of the adjacency matrix of ḡ lies between the following bounds
max{davg(ḡ),

√
dmax(ḡ)} ≤ µ1(ḡ) ≤ dmax(ḡ), where dmax(ḡ) is the maximum degree and davg(ḡ)

the average degree in network ḡ.21 The largest eigenvalue of the adjacency matrix of ḡ is then
maximal and equal to n − 1 in the complete network, ḡc. The existence of a unique NE is
therefore guaranteed by the assumption that β > λ(n− 1).
Part (i): Assume to the contrary that there exists a NE for a fixed network ḡ, x(ḡ), such
that a pair of players k and l are in a complete component with xk 6= xl and assume without
loss of generality that xk > xl. Note that in a complete component Nk(ḡ) \ {l} = Nl(ḡ) \ {k}
holds and therefore

∑
j∈Nl(ḡ) xj =

∑
j∈Nk(ḡ) xj + (xk − xl) >

∑
j∈Nk(ḡ) xj. Note further that∑

j∈N\{l} xj =
∑

j∈N\{k} xj + (xk − xl). Plugging the above into the best response functions for
agent k and l, respectively, we obtain

x̄l(x−l, ḡ) = 1
β+γ

(
α + λ

∑
j∈Nl(ḡ) xj − γ

∑
j∈N\{l} xj

)
= 1

β+γ

(
α + λ

(∑
j∈Nk(ḡ) xj + (xk − xl)

)
− γ

(∑
j∈N\{k} xj + (xk − xl)

))
= 1

β+γ

(
α + λ

∑
j∈Nk(ḡ) xj − γ

∑
j∈N\{k} xj + (λ− γ)(xk − xl)

)
≥ 1

β+γ

(
α + λ

∑
j∈Nk(ḡ) xj − γ

∑
j∈N\{k} xj

)
= x̄k(x−k, ḡ),

where the inequality follows from xk − xl > 0 and λ − γ ≥ 0. We have thereby reached a
contradiction.
Part (ii): The result follows from an analogous argument to the one provided in Part (i). Q.E.D.

Definition 1: κ = v
(
x′i(ḡ

e + ḡ+
i,j), x

′
i(ḡ

e + ḡ+
i,j) + (n− 2)x(ḡe)

)
− v (0, (n− 1)x(ḡe))

= (α2(β + γ)(2β + 4γ − λ)λ) / (2(β + nγ)2(β + 2γ − λ)2) and

κ = 1
n−1

(v ((n− 1)x(ḡc), (n− 1)x(ḡc))− v(0, (n− 1)x(ḡc)))

= (α2λ(2β − λ(n− 1) + 2γ)) / (2(β + γ)(β − λ(n− 1) + nγ)2).

21See, for example, L. Lovasz, Geometric Representations of Graphs (2009).
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Lemma 1: For any network ḡ and corresponding vector of NE effort levels, x(ḡ), if ḡi,j = 0

and i and j deviate by creating the link ḡ′i,j = 1, then x′i(ḡ+ ḡi,j) > xi(ḡ) and x′j(ḡ+ ḡi,j) > xj(ḡ).

Proof. Note that from X = [0,∞) we know that x′j(ḡ + ḡi,j) ≥ 0 and x′i(ḡ + ḡi,j) ≥ 0 holds.
Assume first that γ = 0. For a fixed network ḡ, Nash equilibrium effort levels for agent i and j
are given by xi(ḡ) = 1

β
(α + λyi(ḡ)) and xj(ḡ) = 1

β
(α + λyj(ḡ)), while x′i(ḡ+ ḡi,j) and x′j(ḡ+ ḡi,j)

are given by

x′i(ḡ + ḡi,j) = 1
β

(
α + λ

(
yi(ḡ) + x′j(ḡ + ḡi,j)

))
and

x′j(ḡ + ḡi,j) = 1
β

(α + λ (yj(ḡ) + x′i(ḡ + ḡi,j))) .

Assume to the contrary and without loss of generality that x′i(ḡ + ḡi,j) ≤ xi(ḡ). From the
best response function we know that then x′j(ḡ + ḡi,j) = 0. However, from yj(ḡ) ≥ 0 and
x′i(ḡ + ḡi,j) ≥ 0 we know that x′j(ḡ + ḡi,j) = 1

β
(α + λ (yj(ḡ) + x′i(ḡ + ḡi,j))) > 0 and we have

reached a contradiction. Assume next that γ > 0. Nash equilibrium effort levels for agent i
and j in a fixed network ḡ are then given by xi(ḡ) = 1

β+γ
(α + λyi(ḡ)− γzi(ḡ)) and xj(ḡ) =

1
β+γ

(α + λyj(ḡ)− γzi(ḡ)), while x′i(ḡ + ḡi,j) and x′j(ḡ + ḡi,j) are given by

x′i(ḡ + ḡi,j) = 1
β+γ

(
α + λ

(
yi(ḡ) + x′j(ḡ + ḡi,j)

)
− γ

(
zi(ḡ) + (x′j(ḡ + ḡi,j)− xj(ḡ))

))
and

x′j(ḡ + ḡi,j) = 1
β+γ

(α + λ (yj(ḡ) + x′i(ḡ + ḡi,j))− γ (zj(ḡ) + (x′i(ḡ + ḡi,j)− xi(ḡ)))).

We can now rewrite the latter expressions as

x′i(ḡ + ḡi,j) = xi(ḡ) + 1
β+γ

(
(λ− γ)x′j(ḡ + ḡi,j) + γxj(ḡ)

)
and

x′j(ḡ + ḡi,j) = xj(ḡ) + 1
β+γ

((λ− γ)x′i(ḡ + ḡi,j) + γxi(ḡ)).

But then (λ−γ)x′j(ḡ+ḡi,j)+γxj(ḡ) > 0 and (λ−γ)x′i(ḡ+ḡi,j)+γxi(ḡ) > 0 hold. To see this, note
that xi(ḡ) > 0 and xj(ḡ) > 0 since any Nash equilibrium is interior by Theorem 1 in Ballester
et al. (2006). Moreover, by assumption λ ≥ γ and γ > 0, while from X = [0,∞) we know that
x′j(ḡ + ḡi,j) ≥ 0 and x′i(ḡ + ḡi,j) ≥ 0. Therefore, x′i(ḡ + ḡi,j) > xi(ḡ) and x′j(ḡ + ḡi,j) > xj(ḡ)

hold. Q.E.D.

Proposition 2: κ < κ holds. Furthermore, (i) if κ < κ then (x(ḡc), ḡc) is a PNE, (ii) if κ > κ

then (x(ḡe), ḡe) is a PNE and (iii) if κ ∈ [κ, κ] then (x(ḡc), ḡc) and (x(ḡe), ḡe) are PNE.

Proof. We first derive the two bounds on linking cost, κ and κ. κ is given by the average
marginal payoff per link of an agent in the complete network, ḡc. Note that the effort level
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of an agent in the complete network, ḡc, is given by x(ḡc) = xi(ḡ
c) = α/(β − λ(n − 1) + nγ)

∀i ∈ N , while the deviation effort level of an agent deleting all links in the complete net-
work, denoted by x′i(ḡc −

∑
j∈N\{i} ḡi,j), is given by x′i(ḡc −

∑
j∈N\{i} ḡi,j) = α(β − λ(n − 1) +

γ)/ ((β + γ)(β − λ(n− 1) + nγ)). We then obtain κ, i.e. the average gross marginal payoff of
linking to n − 1 agents in the complete network, ḡc, by substituting x(ḡc) into the relevant ex-
pression for κ. Both expressions are provided in Definition 1. In turn, κ is given by the marginal
payoff of two agents creating a link in the empty network, ḡe. The effort level in the empty
network, x(ḡe), is given by x(ḡe) = xi(ḡ

e) = α/(β + nγ) ∀i ∈ N and the deviation effort level of
a pair of agents i and j creating a link in the empty network, denoted by x′i(ḡe + ḡi,j), is given
by x′i(ḡe + ḡi,j) = α(β + 2γ)/ ((β + nγ)(β − λ+ 2γ)). By symmetry, x′i(ḡe + ḡi,j) = x′j(ḡ

e + ḡi,j).
To obtain κ we substitute x(ḡe) and x′i(ḡe + ḡi,j) into the relevant expression for κ. Again, both
expressions are provided in Definition 1. Next we show that k > 0. Note that the best response
function in the empty network, ḡe, is given by x̄i(0, (n−1)x(ḡe)) = 1

β+γ
(α− γ(n− 1)x(ḡe)). We

can then write κ in terms of x(ḡe) and x′i(ḡe + ḡi,j) as follows

κ = 1
2(β+γ)

(
(α + (λ− γ)x′i(ḡ

e + ḡi,j)− γ(n− 2)x(ḡe))2 − (α− γ(n− 1)x(ḡe))2).
From Theorem 1 in Ballester et al. (2006) we know that all Nash equilibria are interior for any
ḡ, and therefore α− γ(n− 1)x(ḡe) > 0. Moreover, from Lemma 1 we know that x′i(ḡe + ḡi,j) >

x(ḡe) holds. From λ − γ ≥ 0 it then follows that α + (λ − γ)x′i(ḡ
e + ḡi,j) − γ(n − 2)x(ḡe) >

α − γ(n − 1)x(ḡe) > 0 and therefore κ > 0. Next we first show that x(ḡc) > x′i(ḡ
e + ḡi,j),

which we then use to show that κ > κ also holds. Recall first that the expression for x(ḡc) is
given by x(ḡc) = xi(ḡ

c) = α/(β − n(λ − γ) + λ). To see that β − n(λ − γ) + λ > 0 holds,
we rewrite the expression as β + nγ > λ(n − 1), which follows directly from our assumption
that β > λ(n − 1). Denote by x(ḡcn=2) the auxiliary expression obtained when setting n = 2 in
x(ḡc), i.e. x(ḡcn=2) = α/(β + 2γ − λ). Note that x(ḡc) ≥ x(ḡcn=2) holds. To see this, rewrite
β − n(λ− γ) + λ as β + 2γ − λ− (λ− γ)(n− 2) and note that x(ḡc) = x(ḡcn=2) for λ = γ, while
x(ḡc) > x(ḡcn=2) for λ > γ and n > 2. Next we compare x′i(ḡe + ḡi,j) with the expression for
x(ḡcn=2). Recall that x′i(ḡe + ḡi,j) = α(β + 2γ)/ ((β + nγ)(β − λ+ 2γ)), which we can write as
x′i(ḡ

e+ ḡi,j) = (β+γ)/(β+(n−1)γ)x(ḡcn=2). Since (β+γ)/(β+(n−1)γ) < 1 (given that n ≥ 3)
we know that x(ḡcn=2) > x′i(ḡ

e + ḡi,j) holds. From the above we know that x(ḡc) ≥ x(ḡcn=2) holds
and we can therefore write x(ḡc) > x′i(ḡ

e+ ḡi,j). Note that since x′i(ḡe+ ḡi,j) > x(ḡe) (by Lemma
1) it then also follows that x(ḡc) > x(ḡe). This allows us to show the following:

κ = 1
2(β+γ)

(
(α + (λ− γ)(n− 1)x(ḡc))2 − (α− γ(n− 1)x(ḡc))2) / (n− 1)

> 1
2(β+γ)

(
(α + (λ− γ)(n− 1)x(ḡc))2 − (α− γ(n− 1)x(ḡe))2) / (n− 1)

> 1
2(β+γ)

(
(α + (λ− γ)(n− 1)x′i(ḡ

e + ḡi,j))
2 − (α− γ(n− 1)x(ḡe))2) / (n− 1)

> 1
2(β+γ)

(
(α + (λ− γ)(n− 1)x′i(ḡ

e + ḡi,j)− γ(n− 2)x(ḡe))2 − (α− γ(n− 1)x(ḡe))2) / (n− 1)

> 1
2(β+γ)

(
(α + (λ− γ)x′i(ḡ

e + ḡi,j)− γ(n− 2)x(ḡe))2 − (α− γ(n− 1)x(ḡe))2) = κ.
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The first inequality follows from x(ḡc) > x(ḡe), while the second inequality follows from x(ḡc) >

x′i(ḡ
e + ḡi,j). To see that the third inequality holds, note first that α − γ(n − 1)x(ḡe) > 0

holds (since Nash equilibrium effort levels are interior in ḡe), so that α + (λ − γ)x′i(ḡ
e + ḡi,j) −

γ(n − 2)x(ḡe) > 0 holds, which follows from λ − γ ≥ 0 and x′i(ḡ
e + ḡi,j) > 0. Therefore,

α+ (λ− γ)(n− 1)x′i(ḡ
e + ḡi,j)− γ(n− 2)x(ḡe) > 0 holds and the inequality follows directly from

γ(n− 2)x(ḡe) > 0. Finally, the last inequality follows immediately from the quadratic functional
form. Therefore, κ > κ > 0. Note next that, if κ ≤ κ, then an agent in the complete network
does not find it profitable to delete all her links. Since v(yi, zi) is convex in yi and x(ḡc) = xi(ḡ

c)

∀i ∈ N , deleting any subset of links is then also not profitable. Therefore, if κ ≤ κ, the complete
network is a PNE. If κ ≥ κ, then no pair of agents finds it profitable to create a link in the
empty network, and therefore the empty network is a PNE. Q.E.D.

Theorem 1: In any PNE, (x, ḡ), the network ḡ is a nested split graph such that xi < xk ⇔
ηi(ḡ) < ηk(ḡ)⇔ v(yi(ḡ), zi(ḡ)) < v(yk(ḡ), zk(ḡ)) holds.

Proof . We first provide four lemmas, which directly imply that any PNE network is a nested
split graph.

Lemma 2: In any PNE, (x, ḡ), if ḡi,l = 1, then ḡi,k = 1 for all agents k with xk ≥ xl.

Proof. Assume that (x, ḡ) is a PNE and, contrary to the above, that ḡi,l = 1 and ḡi,k = 0

for some agent k with xk ≥ xl. Note first that for ḡi,l = 1 to be part of a PNE, it must be
that v(yi, zi) − v(yi − xl, zi) ≥ κ holds, as otherwise agent i can profitably deviate by deleting
the link with agent l (and adjust her effort level). To simplify notation we write x′k for the
deviation effort level of agent k when linking to agent i and, analogously, x′i for the deviation
effort level of agent i when linking to agent k. Next we show that, if the latter condition holds,
then agent i also finds it profitable to create the link ḡ′i,k = 1. More formally, we show that
v(yi + x′k, zi + (x′k− xk))− v(yi, zi) > v(yi, zi)− v(yi− xl, zi) ≥ κ holds. Recall that from Lemma
1 we know that x′k > xk. Since the value function is strictly convex in the first argument for
fixed zi, v(yi + xl, zi) − v(yi, zi) > v(yi, zi) − v(yi − xl, zi) holds. Furthermore, since xk ≥ xl,
the following also holds v(yi + xk, zi)− v(yi, zi) ≥ v(yi + xl, zi)− v(yi, zi). Finally, to show that
v(yi + x′k, zi + (x′k − xk))− v(yi, zi) ≥ v(yi + xk, zi)− v(yi, zi), we make us of the functional form
of v(yi + x′k, zi + (x′k − xk)) and v(yi, zi), respectively, given by

v(yi + x′k, zi + (x′k − xk)) = 1
2(β+γ)

(α + λyi + λx′k − γzi − γ(x′k − xk))
2

and

v(yi + xk, zi) = 1
2(β+γ)

(α + λyi + λxk − γzi)2.
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To show that v(yi + x′k, zi + (x′k − xk)) > v(yi + xk, zi), it is then sufficient to show that λx′k −
γ(x′k − xk) > λxk. To see this, note that λx′k − γ(x′k − xk) = λxk + (λ − γ)(x′k − xk) ≥ λxk,
where the inequality follows from x′k > xk (by Lemma 1) and λ ≥ γ. Therefore, v(yi + x′k, zi +

(x′k − xk)) − v(yi, zi) > v(yi, zi) − v(yi − xl, zi) ≥ κ holds. That is, if agent i does not find
it profitable to delete the link with agent l, then agent i finds it profitable to create the link
with agent k. For ḡi,k = 0 to hold in a PNE, it would therefore have to be that agent k does
not find it profitable to link to agent i. In the following we show that this cannot be the case.
Note that for ḡi,l = 1 to hold, v(yl, zl) − v(yl − xi, zl) ≥ κ must hold, as otherwise agent l
can profitably deviate by deleting the link with agent i (and adjust her effort level). From the
convexity of the value function in the first argument, we know that v(yl + xi, zl) − v(yl, zl) >

v(yl, zl) − v(yl − xi, zl) holds. Since xk ≥ xl holds, we know from the best response functions
x̄k(ḡ) = 1

β+γ
(α + λyk(ḡ)− γzk(ḡ)) and x̄l(ḡ) = 1

β+γ
(α + λyl(ḡ)− γzl(ḡ)) that λyk(ḡ)−γzk(ḡ) ≥

λyl(ḡ)−γzl(ḡ) also holds. From the value functions for v(yk, zk) = 1
2(β+γ)

(α + λyk(ḡ)− γzk(ḡ))2

and v(yl, zl) = 1
2(β+γ)

(α + λyl(ḡ)− γzl(ḡ))2 it then follows directly that v(yk+xi, zk)−v(yk, zk) ≥
v(yl + xi, zl)− v(yl, zl) holds. Finally, by an argument analogous to the one presented above, we
then know that v(yk + x′i, zk + (x′i − xi))− v(yk, zk) ≥ v(yk + xi, zk)− v(yk, zk) > κ holds. That
is, agent k finds it profitable to link to agent i and proposed deviation is profitable. Therefore,
in any PNE, if ḡi,l = 1, then ḡi,k = 1 for all agents k with xk ≥ xl. Q.E.D.

Lemma 3: In any PNE, (x, ḡ), xi = xk ⇔ yi = yk and xi > xk ⇔ yi > yk .

Proof. Define z =
∑

j∈N xj and write zi and zk as zi = z − xi and zk = z − zk. Subtracting
xk(ḡ) from xi(ḡ) then yields xi(ḡ) − xk(ḡ) = λ

β
(yi(ḡ) − yk(ḡ)) and therefore xi = xk ⇔ yi = yk

and xi > xk ⇔ yi > yk.

Lemma 4: In any PNE, (x, ḡ), xi = xk ⇔ Ni(ḡ) \ {k} = Nk(ḡ) \ {i}.

Proof. First we show that xi = xk ⇒ Ni(ḡ) \ {k} = Nk(ḡ) \ {i}. Assume to the contrary
that xi = xk and Ni(ḡ) \ {k} 6= Nk(ḡ) \ {i}. There must then exist an agent l such that either
l ∈ Ni(ḡ) \ {k} and l /∈ Nk(ḡ) \ {i} or l /∈ Ni(ḡ) \ {k} and l ∈ Nk(ḡ) \ {i}. Since xi = xk,
this contradicts Lemma 2. Next we show that Ni(ḡ) \ {k} = Nk(ḡ) \ {i} ⇒ xi = xk. Assume
to the contrary that Ni(ḡ) \ {k} = Nk(ḡ) \ {i} and xi 6= xk. Without loss of generality assume
that xi > xk. We consider two cases. Assume first ḡi,k = 0. Then yi = yk and xi > xk holds,
which contradicts Lemma 3. Assume next that ḡi,k = 1. Then yk > yi holds and xi > xk again
contradicts Lemma 3. Q.E.D.

Lemma 5: In any PNE, (x, ḡ), xi < xk ⇔ Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i}.

Proof. First we show that xi < xk ⇒ Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i}. Assume to the contrary that
xi < xk, but Ni(ḡ) \{k} ⊂ Nk(ḡ) \{i} does not hold. We distinguish two subcases. Assume first
that xi < xk and Nk(ḡ) \ {i} = Ni(ḡ) \ {k}. This contradicts Lemma 4. Next, assume xi < xk
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and Nk(ḡ) \ {i} 6= Ni(ḡ) \ {k} holds, while Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i} does not hold. There
must then exist an agent l such that l ∈ Ni(ḡ) \ {k} and l /∈ Nk(ḡ) \ {i}. Since xi < xk, this
contradicts Lemma 2. Next we show that Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i} ⇒ xi < xk. Assume to the
contrary Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i} and xi ≥ xk. Assume first ḡi,k = 0. Then yk > yi holds and
xi ≥ xk contradicts Lemma 3. Assume next that ḡi,k = 1. Then again yk > yi holds and xi ≥ xk

again contradicts Lemma 3. Q.E.D.

Lemma 6: In any PNE, (x, ḡ), xi < xk ⇔ ηi(ḡ) < ηk(ḡ), xi = xk ⇔ ηi(ḡ) = ηk(ḡ) and
xi(ḡ) < xk(ḡ)⇔ v(yi(ḡ), zi(ḡ)) < v(yk(ḡ), zk(ḡ)).

Proof. The first two equivalence relationships follow directly from the lemmas above. The
third equivalence relationship follows directly from the best response functions. To see this, note
that xi < xk if and only if α + λyi − γzi < α + λyk − γzk. Q.E.D.

In any PNE the network is a nested split graph.

In any PNE if ḡi,l = 1 and ηk(ḡ) ≥ ηl(ḡ), then xk ≥ xl by Lemma 6 and ḡi,k = 1 by Lemma
2. That is, ḡ is a nested split graph. Q.E.D.

Theorem 2: In any optimal strategy profile, ŝ, ĝ is a nested split graph. Moreover, x̂i(ĝ) >

x̂j(ĝ)⇔ ŷi(ĝ) > ŷj(ĝ)⇔ η̂i(ĝ) > η̂j(ĝ) holds.

Proof. We show that ĝ is a nested split graph in four steps. We first show that the sum of
gross payoffs is proportional to the sum of optimal effort levels.

Step 1 :
∑

i∈N πi(x̂(ḡ), ḡ, θ) = 1
2
α
∑

i∈N x̂i(ḡ, θ)

For a given vector of parameters θ = (α, β, λ, γ) and network ḡ, the planner maximizes gross
welfare by choosing the vector of effort levels, x. That is, we can write

maxx∈Rn
+

∑
i∈N πi(ḡ,x, θ) =

= α
∑

i∈N xi −
1
2
(β + γ)

∑
i∈N x

2
i + α

∑
i∈N(xi

∑
j∈Ni(g) xj)− γ

∑
i∈N(xi

∑
j∈N\{i} xj).

The optimal effort levels x̂i solve the following first order conditions conditions, so that

α− (β + γ)x̂i + 2λ
∑

j∈Ni(g) x̂j − 2γ
∑

j 6=i x̂j = 0 ∀i ∈ N .

Multiplying each first order condition by x̂i and summing over all agents’ first order conditions
yields

1
2
α
∑

i∈N x̂i = 1
2
(β + γ)

∑
i∈N x̂

2
i + λ

∑
i∈N(x̂i

∑
j∈Ni(g) x̂j)− γ

∑
i∈N(x̂i

∑
j 6=i x̂j).

Plugging back into the objective function yields
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∑
i∈N πi(ḡ, x̂(ḡ), θ) = 1

2
α
∑

i∈N x̂(ḡ, θ).

Next define θ = (α, β, λ, γ) and θ̃(θ) = (α̃(θ), β̃(θ), λ̃(θ), γ̃(θ)) with α̃(θ) = α, β̃(θ) = β −
γ, λ̃(θ) = 2λ, γ̃(θ) = 2γ. To simplify notation, we simply write θ̃, α̃, β̃, λ̃ and γ̃ when it is clear
from the context. Assume that θ is such that λ̃/β̃ < 1/(n− 1) and that β̃(θ) > 0.

Step 2 : If θ is such that λ̃/β̃ < 1/(n− 1) and that β̃(θ) > 0, then x(ḡ, θ̃) is well defined, unique
and x(ḡ, θ̃) = x̂(ḡ, θ).

From Theorem 1 in Ballester et al. (2006) we know that if λ̃/β̃ < 1/(n− 1), then the vector
of Nash equilibrium effort levels, x(ḡ, θ̃), is well defined an unique. Note next that in a Nash
equilibrium for a fixed network ḡ, agent i solves the following maximization problem

maxxi∈R+ui(ḡ, xi(ḡ),x−i, θ̃) = α̃xi − 1
2
(β̃ + γ̃)x2

i + λ̃
∑

j∈Ni(g) xixj − γ̃
∑

j∈N\i xixj.

In a Nash equilibrium each agent i’s first order condition holds, i.e. x(ḡ, θ̃) is such that

α̃− (β̃ + γ̃)xi + λ̃
∑

j∈Ni(g) xj − γ̃
∑

j 6=i xj = 0 ∀i ∈ N .

We can now substitute for θ̃ to obtain

α− (β + γ)xi + 2λ
∑

j∈Ni(g) xj − 2γ
∑

j 6=i xj = 0 ∀i ∈ N .

That is, the first order conditions coincide with the ones obtained in Step 1 and therefore x(ḡ, θ̃) =

x̂(ḡ, θ).

Step 3 : Corollary to Lemma 1 (Belhaj et al. 2016). Consider a network ḡ with agents j and k
such that bi(ḡ, λ̃β̃ ) ≤ bi(ḡ,

λ̃
β̃
) and Nj\k 6= ∅. Let ḡ′ = ḡ +A

j\k
k −A

j\k
j . Then for any 1

n−1
> λ̃

β̃
> 0,∑

bi(ḡ
′, λ̃
β̃
) >

∑
bi(ḡ,

λ̃
β̃
).

Belhaj et al. (2016) consider a payoff function in which, relative to the payoff function
considered here, α̃ = 1, β̃ = 1, λ̃ = δ and γ̃ = 0. From Ballester et al. (2006) we know that
x∗i (ḡ, θ̃) = α̃bi(ḡ,

λ̃
β̃
)/(β̃ + γ̃b(ḡ, λ̃

β̃
)), where b(ḡ, λ̃

β̃
) =

∑
i∈N bi(ḡ,

λ̃
β̃
). For θ̃ such that α̃ = 1,

β̃ = 1, λ̃ = δ and γ̃ = 0 we can therefore write x∗i (ḡ, θ̃) = bi(ḡ, δ). In the proof of Lemma 1
(Belhaj et al., 2016), the authors show that a j, k-switch strictly increases

∑
i∈Nxi(ḡ,θ̃). Since

xi(ḡ, θ̃) = bi(ḡ, δ), we know that
∑
bi(ḡ, δ) also strictly increases. Since for a given network,∑

bi(ḡ, δ) is only a function of δ and since this is true for any δ = λ̃
β̃
such that 1

n−1
> δ > 0, we

know that
∑
bi(ḡ

′, λ̃
β̃
) >

∑
bi(ḡ,

λ̃
β̃
) holds after a j, k-switch.
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Step 4 : Any socially optimal network is a nested split graph.

Note that since x(ḡ, θ̃) = x̂(ḡ, θ) we know that there is a unique vector or socially optimal
effort levels for any ḡ and, plugging back into

∑
i∈N πi(ḡ,x, θ), we know that W (x̂(ḡ), ḡ) is

well defined. Note next that ḡ is finite, so that a maximum exists. If the number of links in the
network, ḡ, denoted with η(ḡ) is such that η(ḡ) = n(n−1)

2
(η(ḡ) = 0), then the network is complete

(empty) and therefore a nested split graph. Similarly, if η(ḡ) = 1 or η(ḡ) = n(n−1)
2
− 1, then ḡ is

again a nested split graph. Assume next that ḡ is not a nested split graph such that 2 ≤ η(ḡ) ≤
n(n−1)

2
− 2. Using the expression in Theorem 1 of Ballester et al. (2006) and summing over Nash

equilibrium effort levels for a fixed network, ḡ, we know that
∑
xi(ḡ, θ̃) = α̃b(ḡ, θ̃)/(β̃+ γ̃b(ḡ, θ̃)).

The first derivative with respect to b(ḡ, θ̃) is given by αβ/(β + λγ)2, which is strictly positive
for any θ̃ given our parameter assumptions. Moreover, from our assumptions on parameters
and Step 2 we know that for any θ we can find a θ̃ such that

∑
xi(ḡ, θ̃) =

∑
x̂i(ḡ, θ). That is,∑

x̂i(ḡ, θ) strictly increases after an j, k-switch. From Step 1 we know that
∑

i∈N πi(ḡ, x̂(ḡ), θ) =
1
2
α
∑

i∈N x̂(ḡ, θ) and therefore a j, k-switch also increases the sum of payoffs. From Theorem 1
in Belhaj et al. (2016) we know that in any network that is not a nested split graph, there exists
an N -switch, i.e. any socially optimal network is a nested split graph.

Finally, from x(ĝ, θ̃) = x̂(ĝ, θ) and since ĝ is a nested split graph, x̂i(ĝ) > x̂j(ĝ) ⇔ ŷi(ĝ) >

ŷj(ĝ)⇔ η̂i(ĝ) > η̂j(ĝ) follows directly from Theorem 1. Q.E.D.
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